
CO₂-Verminderungskosten für die bayerische Industrie im Trendszenario

Hinweis Dieses Werk darf nur von den Mitgliedern der vbw – Vereinigung der Bayerischen Wirtschaft e. V. zum internen Gebrauch sowie zur Unterstützung der jeweiligen Verbandsmitglieder im entsprechend geschlossenen Kreis unter Angabe der Quelle vervielfältigt, verbreitet und zugänglich gemacht werden. Eine darüber hinausgehende Nutzung – insbesondere die Weitergabe an Nichtmitglieder oder das Einstellen im öffentlichen Bereich der Homepage – stellt einen Verstoß gegen urheberrechtliche Vorschriften dar.

Vorwort

Zwischen Zielpfad und Trendszenario: Bayerns Industrie im Wandel

Die Transformation der Industrie hin zur Klimaneutralität unter Wahrung ihrer Wettbewerbsfähigkeit zählt zu den größten Herausforderungen der kommenden Jahrzehnte. Ambitionierte Zielpfade geben dafür die notwendige Richtung vor. Gleichzeitig zeigt die Realität, dass Märkte, Infrastrukturen und Technologien nicht immer mit den politischen Vorstellungen Schritt halten. Genau hier setzt die vorliegende Studie an: Sie vergleicht Zielpfade mit einem Trendszenario und schafft damit eine fundierte Basis für die nächsten Schritte der industriellen Transformation.

Die Analyse unterstreicht, dass Effizienzsteigerungen und Elektrifizierung vielfach No-Regret-Maßnahmen sind und damit das Fundament einer beschleunigten Transformation bilden können. Aktuell werden notwendige Investitionen jedoch durch die Rahmenbedingungen gehemmt. Hier muss die Politik ansetzen, damit der Wandel an Fahrt gewinnt. In vielen Fällen kommt es vor allem darauf an, Planungssicherheit zu schaffen – regulatorisch und infrastrukturell. Andere notwendige CO₂-Minderungsmaßnahmen werden sich auch mittelfristig nicht rechnen, so dass zusätzliche Instrumente unabdingbar sind, um einer Deindustrialisierung entgegenzuwirken.

Die Analyse macht klar: Für eine erfolgreiche Transformation braucht es beides – langfristige Zielpfade als strategischen Kompass und Trendszenarien als Realitätscheck, um die tatsächlichen Handlungsnotwendigkeiten aufzuzeigen. Nur wenn wir diese Perspektiven zusammenführen, können wir Investitionsanreize so ausgestalten, dass sie Orientierung geben, Wirtschaftlichkeit sichern und Innovationskraft fördern. Mit dieser Studie wollen wir einen Beitrag leisten, damit Bayern den Weg zur klimaneutralen Industrie entschlossen, aber zugleich realistisch und wettbewerbsfähig beschreiten kann.

Bertram Brossardt 16. Oktober 2025

Inhalt

Manage	ment Summary	1
1	Industrietransformation neu bewerten: Was aktuelle Trends für die Kosten der Industrietransformation bedeuten	. 2
2	Status quo: Die bayerische Energie- und Industriewende im Überblick	5
2.1	Die Richtung ist vorgegeben: Ein mögliches Zielbild der bayerischen Energiewende ist bereits klar beschrieben	6
2.2	Der Einfluss des EU-Emissionshandels auf die bayerische Industrie überwiegt gegenüber bayerischen und nationalen Klimaschutzzielen	8
3	Das bayerische Trendszenario: Dynamiken und Hemmnisse im Vergleich zum Zielpfad	12
3.1	Wie sich Energieträgerpreise und weitere Kostenentwicklungen im Ziel- und Trendszenario unterscheiden	14
3.2	Anwendungsfaktoren geben die Einsatzpotenziale von CO₂- Verminderungstechnologien für die bayerischen Schlüsselbranchen vor	19
4	CO ₂ -Verminderungskostenkurven zeigen die Differenzkosten zu fossilen Referenz auf	r 21
5	Die zehn wichtigsten Erkenntnisse für die Industrietransformati in Bayern	on 25
5.1	CO₂-Neutralität der Industrie ist möglich, aber mittelfristig höhere Energiepre im Trendszenario hemmen notwendige Investitionen	ise 27
5.2	Die Maßnahmencluster zeigen eine klare Kostenhierarchie: Elektrifizierungsmaßnahmen mit den niedrigsten CO ₂ -Verminderungskosten	29
5.3	90 Prozent des CO₂-Verminderungspotenzials in der bayerischen Industrie können mit nur 45 der Mehrkosten erschlossen werden	30
5.4	Effizienzmaßnahmen sind "No-Regret"-Maßnahmen	31
5.5	Elektrifizierungsmaßnahmen führen auch im Trendszenario zu verminderten Kosten	32

Der Einsatz von grünem Wasserstoff als Brennstoff führt durch hohe Energieträgerkosten zu OPEX-Mehrkosten ggü. der Referenz	33
Die CO ₂ -Abscheidung erreicht erst nach Auslauf der freien Zertifikatszuteilung im EU-ETS I nahezu Kostenparität mit der Referenz	g 34
50 Prozent der Maßnahmen benötigen eine OPEX-Förderung, um die Umsetzung anzureizen	37
Das absolute Kostenniveau steigt sowohl bei der Umsetzung von CO₂- Verminderungsmaßnahmen als auch bei Reinvestitionen in die Referenztechnologie	39
Notwendige Investitionen verzögern sich: Jetzt Planungssicherheit schaffen, uausstehende Investitionen zu aktivieren	um 40
Zielszenarien geben die Richtung vor, Trendanalysen bewerten die nächsten Schritte	42
rzeichnis artner/Impressum	43 45 57
	Energieträgerkosten zu OPEX-Mehrkosten ggü. der Referenz Die CO ₂ -Abscheidung erreicht erst nach Auslauf der freien Zertifikatszuteilung im EU-ETS I nahezu Kostenparität mit der Referenz 50 Prozent der Maßnahmen benötigen eine OPEX-Förderung, um die Umsetzung anzureizen Das absolute Kostenniveau steigt sowohl bei der Umsetzung von CO ₂ -Verminderungsmaßnahmen als auch bei Reinvestitionen in die Referenztechnologie Notwendige Investitionen verzögern sich: Jetzt Planungssicherheit schaffen, uausstehende Investitionen zu aktivieren Zielszenarien geben die Richtung vor, Trendanalysen bewerten die nächsten Schritte

Management Summary

Management Summary

Die vorliegende Studie beurteilt die Entwicklung von CO₂-Verminderungskosten für die bayerische Industrie aus **betriebswirtschaftlicher Akteurs**- und **volkswirtschaftlicher Systemsicht**. Hierfür wird ein **Trendszenario mit einem Zielszenario** verglichen. Beide Szenarien erreichen die Klimaziele, basieren jedoch auf verschiedenen Ansätzen: Im Zielszenario werden ausgehend von den Klimaschutzzielen rückwirkend die notwendigen Maßnahmen abgeleitet. Das Trendszenario hingegen berücksichtigt die aktuell bestehende Rahmenbedingungen und bewertet auf dieser Grundlage die Transformationsmaßnahmen neu.

Die Analyse gelangt zu folgenden fünf Kernaussagen für die Transformation der bayerischen Industrie:

Effizienz & Elektrifizierung: CO2-Vermeidung und Kosteneinsparung

Effizienzmaßnahmen stellen in der Regel "No-Regret"-Maßnahmen dar. Auch der überwiegende Anteil der Elektrifizierungsmaßnahmen führt unter allen betrachteten Rahmenbedingungen zu verminderten Kosten im Vergleich mit der fossilen Referenz.

OPEX-Förderung: Ein notwendiges Instrument für die Hälfte der Maßnahmen

Nicht alle erforderlichen CO₂-Verminderungsmaßnahmen führen mittelfristig zu Kosteneinsparungen. Insbesondere beim Brennstoffwechsel zu "grünen Molekülen" kommt es zu OPEX-getriebenen Mehrkosten. Eine OPEX-Förderung könnte die Umsetzung dieser Maßnahmen anreizen.

45 Prozent Einsatz – 90 Prozent Wirkung: Finanzielle Mittel gezielt einsetzen

Eine vollständige Klimaneutralität der bayerischen Industrie ist mit Mehrkosten verbunden. 90 Prozent des gesamten CO₂-Verminderungspotenzials können dabei bereits mit 45 Prozent dieser Mehrkosten erschlossen werden. Die Erschließung der verbleibenden 10 Prozent erfordert weitere, passgenaue Fördermaßnahmen.

Hoffnungsträger auf dem Prüfstand: Wasserstoff und CO2 - Abscheidung

Der Einsatz von grünem Wasserstoff als Brennstoff führt zu hohen CO_2 -Verminderungskosten. Auch Verfahren zur CO_2 -Abscheidung erreichen erst durch einen hohen CO_2 -Preis Kostenparität mit den Referenzprozessen. Für die Umsetzung beider Maßnahmencluster sind folglich zusätzliche Finanzierungsanreize nötig.

Planungssicherheit für Investitionen: Verlässliche Rahmenbedingungen schaffen

Zielbilder der Transformation dienen als langfristige Orientierung. Die konkreten Pfade dahin müssen jedoch regelmäßig anhand aktueller Trends neu bewertet werden. Um Verunsicherung durch Abweichungen von "Ziel" und "Trend" zu vermeiden, braucht es verlässliche Energiepreise, klare Regulatorik und eine leistungsfähige Infrastruktur.

Industrietransformation neu bewerten: Was aktuelle Trends für die Kosten der Industrietransformation bedeuten

1 Industrietransformation neu bewerten: Was aktuelle Trends für die Kosten der Industrietransformation bedeuten

Der Vergleich zwischen Ziel- und Trendszenarien legt Umsetzungslücken in der Industrietransformation frei.

Bisherige Studien für eine treibhausgasneutrale Industrie und Energiewirtschaft leiten Transformationspfade aus den vorgegebenen Klimaschutzzielen ab.

Sowohl bayerische als auch nationale und europäische Klimaschutzgesetze streben Treibhausgasneutralität an. Damit verbunden ist eine Transformation beispielsweise der Sektoren Industrie und Energiewirtschaft. Studien wie der *Bayernplan Energie 2040* [1] oder die *Energiesystemanalyse – Bayern klimaneutral* [2] zeigen in sogenannten Zielszenarien die Herausforderungen zur Erreichung dieser Klimaschutzziele auf. Dabei werden die Zielwerte exogen vorgegeben und daraus abgeleitet, welche Maßnahmen notwendig sind, um diese Zielsetzungen zu erreichen.

In der Realität werden diese berechneten Zielpfade häufig verfehlt. Eine reine Neuberechnung führt zu noch ambitionierteren Transformationspfaden, ohne jedoch die systemischen Ursachen der Abweichung und deren Auswirkungen zu adressieren.

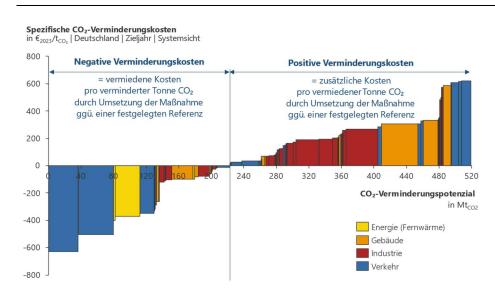
Unter Berücksichtigung aktueller Dynamiken, Hemmnisse und Bedingungen zeigt sich ein von den Transformationspfaden der Zielszenarien abweichendes Bild. Während der *Bayernplan Energie 2040* (Zielszenario: E.Plan) beispielsweise eine notwendige Inbetriebnahme von > 550 MW installierter Leistung durch Windkraftanlagen pro Jahr oder die Installation von > 100 MW Elektrolyseurleistung in Bayern berechnet hat, zeichnet sich in der Realität ein anderes Bild. So wurden im Jahr 2024 Windkraftanlagen mit 45,7 MW im gesamten Jahr in Betrieb genommen (bei gleichzeitiger Stilllegung von 4,5 MW) [18] und ein Elektrolyseur mit 5 MW installiert. Die Ursachen für diese Unterschiede sind vielfältig und beinhalten unter anderem

- die unsichere Verfügbarkeit klimaneutraler Energieträger zu wirtschaftlichen Preisen,
- verlangsamte Reinvestitionszyklen etwa aufgrund der schwierigen konjunkturellen Lage, oder
- die geringere Anzahl an Technologieoptionen aufgrund schleppenden Infrastrukturausbaus bzw. geringerer technologischer Reife.

Durch die abweichende Transformation des Energiesystems ändern sich auch die Rahmenbedingungen, unter welchen die Akteure der bayerischen Industrie ihre anstehenden Investitionsentscheidungen treffen müssen, sowie die Kosten.

Industrietransformation neu bewerten: Was aktuelle Trends für die Kosten der Industrietransformation bedeuten

In aktuellen Szenarien und der Diskussion um die Erreichung der Klimaziele in der Industrie wird der Einfluss beobachtbarer und erwartbarer Trends unzureichend berücksichtigt.


Die vorliegende Studie zielt darauf ab diese Lücke zu schließen. Hierzu wird ein *Trendszenario* entwickelt, das die Auswirkungen der aktuell zu beobachtenden und in der Kurz- und Mittelfrist zu erwartenden Trends bei der Entwicklung des Energiesystems berücksichtigt. Die langfristigen Klimaschutzziele werden dabei nicht in Frage gestellt. Im Zentrum steht die Frage wie sich diese im Vergleich zu den Zielszenarien veränderten Rahmenbedingungen der Transformation auf die Verfügbarkeit und die Kosten von CO₂-Verminderungsmaßnahmen in der bayerischen Industrie auswirken. Hierzu werden die CO₂-Verminderungspotenziale der bayerischen Industrie technologiespezifisch neu bewertet. Der Fokus liegt dabei auf den bayerischen Schlüsselbranchen mit der höchsten Energie- und Emissionsintensität. Aus dem Abgleich zwischen Trend- und Zielpfaden sowie der Bewertung der Mehrund Minderkosten von Klimaschutztechnologien im Vergleich zu den heute im Einsatz befindlichen Technologien werden schließlich Leitplanken für die zukünftige Ausgestaltung von Finanzierungsanreizen hergeleitet. Diese sind notwendig, um die Umsetzung von CO₂-Verminderungsmaßnahmen unter aktuellen Rahmenbedingungen zu ermöglichen und damit die Industrietransformation in Bayern zu stärken.

Auch wenn sich regionale Rahmenbedingungen und Branchenstrukturen unterscheiden: Der Ansatz des Trendszenarios ist **auch auf die gesamtdeutsche Industrielandschaft übertragbar**. Die identifizierten Trends und Herausforderungen – etwa hinsichtlich der Investitionsanreize und Förderinstrumente – sind in vergleichbarer Form auch außerhalb der bayerischen Industrie relevant und erfordern teilweise Lösungsansätze auf Bundesebene.

Industrietransformation neu bewerten: Was aktuelle Trends für die Kosten der Industrietransformation bedeuten

Abbildung 1 Beispielhafte Darstellung einer sektorübergreifenden CO₂-Verminderungskostenkurve für Deutschland

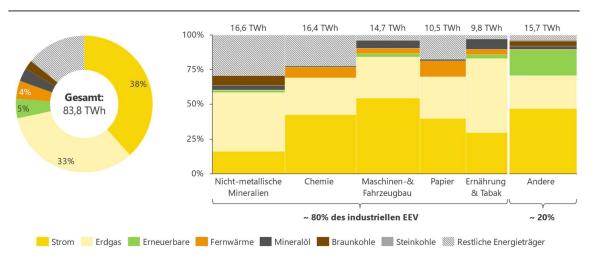
Quelle: Eigene Darstellung, FfE.

CO₂-Verminderungskostenkurven: Ein mächtiges Werkzeug, das richtig eingesetzt werden muss

CO₂-Verminderungskosten sind ein hilfreiches Mittel, um einzelne CO₂-Verminderungsmaßnahmen untereinander bzw. unter verschiedenen Rahmenbedingungen zu vergleichen. Dabei werden sowohl die Differenzkosten je eingesparter Tonne CO₂ als auch das CO₂-Verminderungspotenzial einer Transformationstechnologie gegenüber einer zugehörigen Referenztechnologie dargestellt. Die Abbildung mehrerer dieser Technologiepaar ergibt eine sogenannte CO₂-Verminderungskostenkurve (Abbildung 1). Diese dient dann als Ausgangspunkt für tiefere Analysen der zugrundeliegenden Datenstrukturen und jeweiliger Kostentreiber. Mehr dazu in Kapitel 4.

Negative CO₂-Verminderungskosten ≠ Niedrige Gesamtkosten

In der Arbeit mit CO₂-Verminderungskostenkurven ist zu beachten, dass Verminderungskosten Differenzkosten aus dem Vergleich zweier Technologien miteinander sind. Sie geben alleine noch keine Auskunft über das absolute Kosten- und Investitionsniveau. Dieses kann sowohl bei der Umsetzung von CO₂-Verminderungsmaßnahmen als auch bei Reinvestitionen in fossile Referenztechnologien ansteigen.



2 Status quo: Die bayerische Energie- und Industriewende im Überblick

Die sinkende Ausgabe von CO₂-Zertifikaten im EU-ETS I ist maßgeblicher Treiber der Transformation der energieintensiven Industrie

Über 80 Prozent des Endenergieverbrauchs der bayerischen Industrie von 83,3 TWh (Abbildung 2) entfallen auf die fünf Schlüsselbranchen nicht-metallische Mineralien, Chemie, Maschinen- und Fahrzeugbau, Papier sowie Ernährung und Tabak, für die daher in dieser Studie eine detaillierte, technologiespezifische Betrachtung durchgeführt wird. Der Endenergieverbrauch (EEV) und die Emissionen der weiteren Branchen werden berücksichtigt, jedoch mit einer geringeren technologischen Detailtiefe.

Abbildung 2
Bayerischer Endenergieverbrauch (EEV) nach Wirtschaftszweig und Energieträger im Jahr 2022

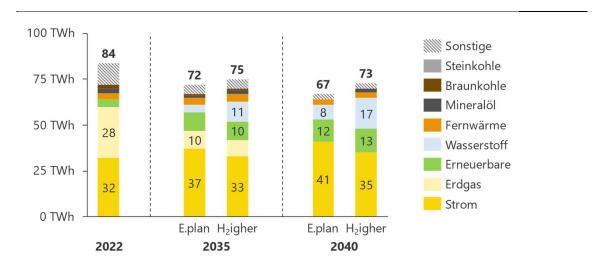
Quelle: Eigene Darstellung auf Basis von [19], FfE.

Im Status quo sind bereits 38 Prozent des Endenergieverbrauchs elektrifiziert. Weitere fünf Prozent werden durch erneuerbare Energieträger (z.B. Biomasse) sowie vier Prozent über Fernwärme gedeckt. Die verbleibenden fossilen Energieverbräuche verursachen energetisch bedingte CO₂-Emissionen und erfordern weitere Investitionen in Transformationstechnologien (Kapitel 4), um die entsprechenden Prozesse zu elektrifizieren oder auf erneuerbare, emissionsfreie Energieträger umzustellen.

2.1 Die Richtung ist vorgegeben: Ein mögliches Zielbild der bayerischen Energiewende ist bereits klar beschrieben

Das Bayerische Klimaschutzgesetz (BayKlimaG) [3] gibt die wesentlichen Klimaschutzziele und Maßnahmen vor. Das zugehörige Umsetzungskonzept *Energieplan Bayern 2040* [20] des Bayerischen Staatsministeriums für Wirtschaft, Landesentwicklung und Energie (StMWi) zeigt basierend auf der *Energiesystemanalyse – Bayern klimaneutral* [2] einen Weg zum treibhausgasneutralen Bayern auf. Weitere, konkrete Maßnahmen sind außerdem in fünf Aktionsfeldern im *Bayerischen Klimaschutzprogramm* [21] von 2024 festgelegt.

Vergleichbar mit der oben genannten Energiesystemanalyse zeigt auch die Studie *Bayern-plan Energie 2040* mögliche Szenarien auf, um Bayern klimaneutral zu gestalten. Sie dient in den weiteren Betrachtungen als Referenz für den Zielpfad, da die darin betrachteten Transformationsszenarien auf umfangreichen Stakeholder-Workshops mit Akteuren der bayerischen Industrie basieren. Die Zielszenarien wurden dabei mit umfassender fachlicher Expertise durch die Teilnehmenden auf den Prüfstand gestellt und spiegeln somit praxistaugliche und konsensfähige Transformationspfade dar. Die beiden wichtigsten Szenarien sind:


- Szenario E.plan: Günstige Bedingungen für Strom.
 Ein Technologiemix-Szenario, welches aus einem intensiven Dialogprozess mit einschlägigen bayerischen Akteuren aus Industrie und Energiewirtschaft entstanden ist. Dabei überwiegen Elektrifizierungsmaßnahmen in Bereichen mit technologieoffener Entwicklung. Wasserstoff wird dort verwendet, wo es keine Alternativen gibt.
- Szenario H₂igher: Günstige Bedingungen für Wasserstoff
 In diesem Szenario wird mehr Wasserstoff zur Erreichung der Klimaneutralität eingesetzt als im Szenario E.plan. In Bereichen mit technologieoffener Entwicklung überwiegt der Wasserstoffeinsatz, um Treibhausgasemissionen zu reduzieren.

In beiden Szenarien wird eine klimaneutrale bayerische Industrie erreicht. Die Entwicklung der industriellen Endenergieverbräuche (EEV) (Abbildung 3) ergibt dabei für beide Szenarien drei Kernerkenntnisse:

- Der industrielle EEV in Bayern sinkt von 84 TWh im Status quo auf 67 bis 73 TWh.
- Der industrielle Strombedarf steigt von 32 TWh im Status quo auf 35 bis 41 TWh.
- Bereits deutlich vor 2035 gibt es einen industriellen Wasserstoffbedarf, der im Zieljahr zwischen 8 und 17 TWh liegt.

Abbildung 3 Industrieller bayerischer Endenergieverbrauch (EEV) in den Szenarien E.plan und H_2 igher im Bayernplan Energie 2040 [1].

Quelle: Eigene Darstellung in Anlehnung an [1], FfE.

Für das gesamte bayerische Energiesystem ergibt sich damit der in Abbildung 4 gezeigte Zielpfad, welcher die erforderliche Maßnahmenumsetzung für die Erreichung der Klimaneutralität in Bayern pro Woche von 2023 bis 2040 aufzeigt.

Abbildung 4

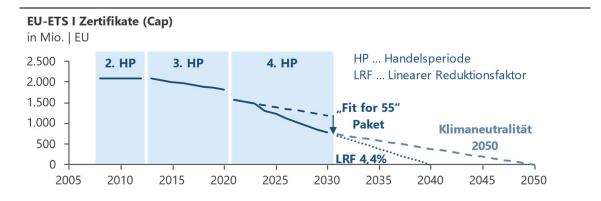
Eine typischen Woche zwischen 2023 und 2040 im Zielpfad zur bayerischen Klimaneutralität in den Szenarien E.plan bzw. H2igher [1].

Quelle: Eigene Darstellung in Anlehnung an [1], FfE.

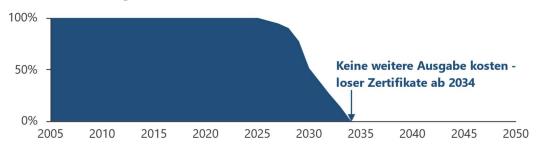
Der ambitionierte Zielpfad zeigt die Herausforderungen auf, die mit der Transformation der Industrie und des Energiesystems verbunden sind. Nachdem die Bayerische Landesregierung das Ziel der Klimaneutralität bis 2040 gemäß BayKlimaG zunächst im Koalitionsvertrag [4] bestätigt hatte, legt die aktuelle Berichterstattung nahe, dass im bayerischen Kabinett bereits eine Verschiebung des Klimaziels auf 2045 beschlossen wurde [22]. Eine entsprechende Initiative zur Anpassung des Gesetzes steht derzeit noch aus. Nichtsdestotrotz zeigt dieses Beispiel, dass sich auch regulatorische Rahmenbedingungen im Wandel befinden. Aufgrund der ungeklärten politischen Vorgabe spricht diese Studie vom "Zieljahr der Klimaneutralität" als Zielzustand.

Was bedeutet das Zielbild der Klimaneutralität für die bayerische Industrie?

Die Ausführungen zeigen, dass praxistaugliche und technisch umsetzbare Pfade zur Klimaneutralität der bayerischen Industrie vorhanden sind. Diese Pfade setzten insbesondere auf Effizienz, zunehmende Elektrifizierung, den Einsatz von Wasserstoff und CO₂-Abscheidung. Entscheidend für die Umsetzung sind dabei u.a. die wirtschaftliche Verfügbarkeit der entsprechenden Energieträger und der Ausbau der zugehörigen Netzinfrastrukturen. Im verbleibenden Zeitfenster müssen die anstehenden Reinvestitionszyklen genutzt werden, um auf klimaneutrale Technologien umzurüsten. Eine politische Diskussion um die Verschiebung des Zieljahres führt nicht nur zu Unsicherheiten bezüglich der Transformationspfade, sondern kann auch den Ausbau der relevanten Netzinfrastruktur verzögern. Dadurch steigt die Gefahr, dass den Unternehmen nicht rechtzeitig die effizientesten Technologien und Energieträger zur Transformation zur Verfügung stehen, was den wirtschaftlichen Druck auf sie erhöht. Zwar scheint eine Verschiebung des Zieljahres kurzfristig Freiräume zu eröffnen, langfristig drohen jedoch Nachteile wie der Verlust von Planungssicherheit und die Benachteiligung von "First-Movern", die bereits in CO₂-neutrale Transformationstechnologien investiert haben. Gleichzeitig steigt der Handlungsdruck durch die Preisentwicklung im EU-Emissionshandel.


2.2 Der Einfluss des EU-Emissionshandels auf die bayerische Industrie überwiegt gegenüber bayerischen und nationalen Klimaschutzzielen

Neben den gesetzlichen nationalen und bayerischen Klimaschutzzielen sind Emissionshandelssysteme (Emissions Trading System, ETS) das zentrale marktwirtschaftliche Element, um die Umsetzung von CO₂-Verminderungsmaßnahmen zum Erreichen der Klimaschutzziele anzureizen – auch für die bayerische Industrie. Auf europäischer Ebene umfasst der EU-ETS I seit 2005 unter anderem emissionsintensive Industrieanlagen. Diese müssen für ihre CO₂-Emissionen am Markt gehandelte oder frei zugeteilte Emissionsberechtigungen vorweisen.


Ab 2027 erweitert das EU-ETS II dieses Prinzip der CO₂-Preisbildung am freien Markt auf weitere Sektoren, unter anderem Brennstofflieferanten, kleinere Industrieanlagen und den Straßenverkehr. Damit löst der EU-ETS II das bisherige nationale

Brennstoffemissionshandelsgesetz (BEHG) ab, welches seit 2021 einen gesetzlichen Festpreis auf die Emissionen aus nicht im EU-ETS erfasste Brennstoffe erhebt und ab 2026 in eine Versteigerung – zunächst innerhalb eines Preiskorridors – übergeht.

Abbildung 5 Projektion der verfügbaren CO₂-Zertifikate (oben) und der kostenlosen Zuteilung für emissionsintensive Industrien (unten) im EU-ETS I

Kostenlose Zuteilung für emissionsintensive Industrie

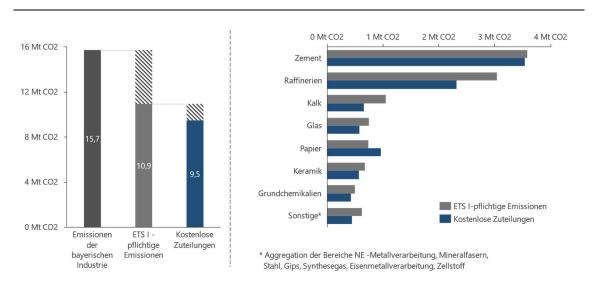
Quelle: Eigene Darstellung basierend auf [5], FfE.

Ein Großteil der energieintensiven Industrie in Bayern, auf die sich auch diese Studie im weiteren Verlauf fokussiert, ist ETS-I-pflichtig und muss für seine verursachten CO₂-Emissionen entsprechende Zertifikate nachweisen. Die Anzahl der verfügbaren Zertifikate verringert sich jährlich. Damit steigt der Zertifikatspreis und gibt einen marktwirtschaftlicher Anreiz zur Emissionsminderung. Für die ETS-I-pflichtigen Unternehmen sind die sinkende Gesamtzahl ausgegebener Zertifikate (Cap) und die rückläufige kostenlose Zuteilung relevant (Abbildung 5).

Die Anzahl der am Markt verfügbaren CO₂-Zertifikate nimmt kontinuierlich ab: Um das Jahr 2040 herum werden keine neuen CO₂-Zertifikate mehr ausgegeben.

Der EU-ETS wurde als Instrument eingeführt, um die Treibhausgasemissionen der EU zu senken und gleichzeitig Einnahmen zur Finanzierung des ökologischen Wandels zu generieren [23]. Derzeit müssen die Akteure der Bereiche Energie, Industrie, Luftverkehr und Schifffahrt (seit 2024) am EU-ETS I teilnehmen. Dieser basiert auf dem sogenannten "Cap & Trade"-Prinzip, wonach die jährlich ausgegebenen Zertifikate eine Obergrenze der zu

emittierenden CO₂-Emissionen vorgibt. Dieses "Cap" wird seit der dritten Handelsperiode (HP) über einen linearen Reduktionsfaktor (LRF) kontinuierlich abgesenkt, womit jährlich weniger CO₂-Zertifikate verfügbar sind und damit die CO₂-Emissionen sinken müssen. Mittlerweile befindet sich der EU-ETS in der vierten Handelsperiode (2021 bis 2030). Um die ambitionierten Klimaziele zu erreichen, hat die EU die Reduzierung der Obergrenze für Emissionszertifikate in dieser Phase beschleunigt. Nach derzeitiger Projektion werden damit statt 2050 bereits im Jahr 2040 keine CO₂-Zertifikate im EU-ETS I mehr ausgegeben. Auch wenn Mechanismen denkbar sind – etwa der frühzeitige Einkauf zum Aufbau einer Reserve nicht genutzter CO₂-Zertifikate –, um den konkreten Zeitpunkt im Einzelfall etwas zu verschieben, werden ETS-I-pflichtige Unternehmen in diesem Zeitraum CO₂-Neutralität erreichen müssen.


Bis 2034 wird die kostenlose Zuteilung von CO₂-Zertifikaten an die emissionsintensive Industrien eingestellt, wodurch diese unter besonders hohem Druck zur Reduktion von Treibhausgasen stehen.

In den bisherigen Phasen des EU-ETS I wurden den emissionsintensiven Industrien kostenlose CO₂-Zertifikate zugeteilt, um sie vor einer plötzlichen hohen finanziellen Belastung zu bewahren. Durch den freien Handel der Zertifikate ist dennoch ein Emissionsminderungsanreiz gegeben: Emissionsintensive Unternehmen, die CO₂-Verminderungsmaßnahmen umsetzen und damit nicht das volle Kontingent der freien Zuteilung ausschöpfen, können die verbleibenden Zertifikate als Erlösquelle verkaufen oder zeitlich unbegrenzt behalten und zu einem späteren Zeitpunkt einsetzen. Die freie Zuteilung wird jedoch bis 2034 kontinuierlich zurückgefahren und die emissionsintensiven Industrien müssen einen zunehmenden Anteil der notwendigen CO₂-Zertifikate selbst erwerben. Ab 2034 sollen keine kostenlosen Zertifikate mehr ausgegeben werden.

Abbildung 6

Einordnung der Emissionen der bayerischen Industrie im EU-ETS I (links) und Aufschlüsselung der freien Zuteilung auf die zugehörigen Wirtschaftsaktivitäten in Bayern (rechts)

Quelle: Eigene Darstellung basierend auf [24] [25], FfE.

Was bedeuten die Entwicklungen im EU-ETS I für die bayerische Industrie?

Wie Abbildung 6 zeigt, verursacht die bayerische Industrie im Status quo (2022) 15,7 Mio. t CO_2 -Emissionen. Etwa zwei Drittel davon sind derzeit unter dem ETS I zertifikatspflichtig. Jedoch wird ein Großteil davon per kostenloser Zuteilung abgedeckt. Die im Jahr 2022 frei zugeteilten Zertifikate für ca. 9,5 Mio. t CO_2 -Emissionen haben bei einem CO_2 -Preis von 72 Euro/t CO_2 (Börsenpreis vom 25.08.2025) einen Wert von knapp 0,7 Mrd. Euro.

Die verbleibenden 1,4 Mio. t ETS- I-pflichtiger Emissionen benötigen Zertifikate im Wert von ca. 0,1 Mrd. Euro. Für die Emissionen i.H.v. 4,8 Mio. t CO₂ außerhalb des ETS I fallen im BEHG (2025: 55 Euro/t CO₂) Kosten von knapp 0,3 Mrd. Euro an.

Die emissionsintensivsten Branchen und damit die Branchen mit der größten kostenlosen Zuteilung von Zertifikaten sind Zement, Raffinerien, Kalk, Glas, Papier, Keramik und Grundchemikalien. Für die ETS-I-pflichtigen Sektoren setzen das Auslaufen der freien Zertifikatszuteilung bis 2034 und der absolute Rückgang der am Markt verfügbaren Zertifikate bis 2040 die Rahmenbedingungen für die Dekarbonisierung. Da nach derzeitiger Rechtslage ab 2040 keine neuen CO₂-Zertifikate ausgegeben werden, müssen diese Industrien bis dahin unabhängig vom Zieljahr des bayerischen und deutschen Klimaschutzgesetzes Treibhausgasneutralität erreichen.

3 Das bayerische Trendszenario: Dynamiken und Hemmnisse im Vergleich zum Zielpfad

Das Trendszenario berücksichtigt aktuelle Transformationshemmnisse und weicht daher kurz- und mittelfristig sichtbar von den Zielpfaden ab

Die ersten beiden Kapitel zeigen das Spannungsfeld auf, in welchem sich die bayerische Industrie derzeit befindet: Einerseits werden die Zielpfade der Energiewende nicht erreicht (Kapitel 1), andererseits nimmt der Druck auf emissionsintensive Unternehmen durch den EU-ETS zu (Kapitel 2). Insbesondere fehlende infrastrukturelle Voraussetzungen und Unsicherheiten zur wirtschaftlichen Verfügbarkeit von grünem Wasserstoff verzögern die notwendigen Investitionsentscheidungen.

Trendszenario vs. Zielszenario: Definitionen der grundlegenden Rahmenparameter

Um die Erreichung der Klimaschutzziele nicht zu gefährden, ist eine aktualisierte Betrachtung der Industrietransformation unter Berücksichtigung der wahrnehmbaren Entwicklungen notwendig. So können Umsetzungslücken identifiziert und Lösungsansätze abgeleitet werden. Dazu wird dem bisherigen Ansatz eines **Zielszenarios**, welches ausgehend von den Klimaschutzzielen die notwendigen Maßnahmen ableitet, ein **Trendszenario** gegenübergestellt. Dieses berücksichtigt existierende Rahmenbedingungen und bewertet die notwendigen Transformationsmaßnahmen neu. Beide Szenarien erreichen die finalen Klimaziele unter der Annahme, dass ggf. geringfügig verbliebende Emissionen im Zieljahr durch den Einsatz staatlich subventionierter synthetischer Brennstoffen, Wasserstoff, CCS oder natürlicher Senken kompensiert werden. Abbildung 7 zeigt die zugehörigen Grundannahmen.

Abbildung 7
Kernziel und Grundannahmen im Ziel- und Trendszenario

Quelle: Eigene Darstellung, FfE.

Systemsicht vs. Akteurssicht: Sowohl volkswirtschaftliche Kosten als auch die betriebswirtschaftliche Betrachtung sind relevant

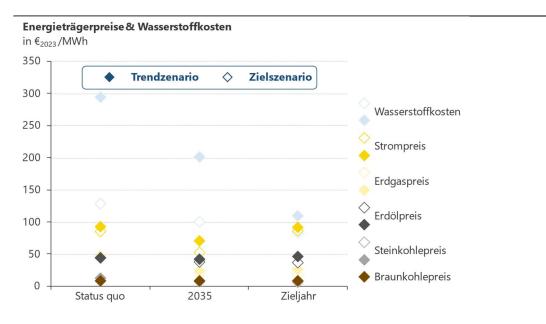
Neben der Unterscheidung zweier übergeordneter Szenarien muss innerhalb dieser Szenarien zwischen den beiden Sichtweisen der **Systemsicht** (quasi-volkswirtschaftliche Betrachtung) und der **Akteurssicht** (betriebswirtschaftliche Betrachtung) unterschieden werden, um belastbare Aussagen über die Mehr- bzw. Minderkosten für die Umsetzung der CO₂- Verminderungstechnologien treffen zu können. Daraus lässt sich ableiten, ob weitere technologische Entwicklungen zur Senkung systemischer Kosten und/oder betriebswirtschaftliche Anreize erforderlich sind. Tabelle 1 zeigt die wichtigsten Merkmale zur Unterscheidung dieser beiden Perspektiven.

Tabelle 1
Vergleichende Charakterisierung von System- und Akteurssicht

	Systemsicht	Akteurssicht ≙ Verbraucherpreis
Kalkulationszinssatz ≙ Rendite einer vergleich- baren Alternativanlage	3,5 Prozent (Opportunitätskosten für die Gesellschaft)	10,5 Prozent (Opportunitätskosten alternativer Investments)
Steuern, Abgaben, Umlagen, CO₂-Preis	Nicht enthalten, da sie keine neuen Systemkosten, sondern nur Neuverteilungen darstellen	Enthalten
Ausbau der Infrastruktur	Als Infrastrukturkosten berücksichtigt	Als Netznutzungsent- gelte (NNE) berücksichtigt, welche die systemischen Kos- ten auf die Akteure umlegen ¹

Neben Steuern, Abgaben, Umlagen für leitungsgebundene Energieträger, dem CO₂-Preis und Infrastrukturkosten bzw. Netznutzungsentgelte werden in der Kostenstruktur der betrachteten Maßnahmen Energieträgerkosten als variable OPEX berücksichtigt. Die jeweiligen Annahmen und Kostenentwicklungen sind im folgenden Kapitel dargestellt. Hinzu kommen fixe OPEX (z. B. Personalkosten, Instandhaltung) sowie über die jeweilige Nutzungsdauer der Anlagen und mit dem der Perspektive entsprechenden Kalkulationszinssatz annuisierte CAPEX.

¹ Aus Akteurssicht können weitere Infrastrukturkosten bspw. für die Ertüchtigung am eigenen Standort anfallen. Da diese jedoch stark von den spezifischen Voraussetzungen der Unternehmen abhängig sind, werden sie hier nicht berücksichtigt.


3.1 Wie sich Energieträgerpreise und weitere Kostenentwicklungen im Ziel- und Trendszenario unterscheiden

Die im Trendszenario berücksichtigten Entwicklungen wirken sich unmittelbar auf kurz-, mittel- und langfristig zu erwartenden Energieträgerpreise und weiterer Kosten wie Netzentgelte oder den CO₂-Preis aus. Diese Größen sind ausschlaggebend für Investitionsentscheidungen in CO₂-Verminderungstechnologien. Nur eine konsistente Datengrundlage und Kostenberechnung bietet eine verlässliche Grundlage für weitere Betrachtungen. In der vorliegenden Studie ist diese durch das FfE-Energiesystemmodell *ISAaR* gewährleistet.

Energieträgerpreise und Wasserstoffkosten

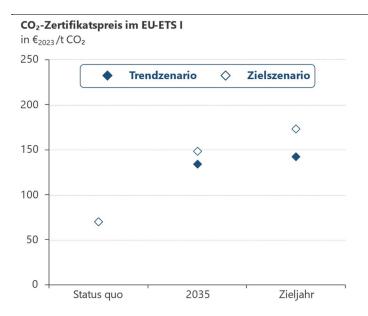
Im Energiesystemmodell *ISAaR* wird aus exogen vorgegebenen Brennstoffpreisen sowie Erzeugungs- und Verbraucherlastprofilen eine Prognose des zukünftig zu erwartenden Strompreises berechnet. Abbildung 8 zeigt die jährlichen Durchschnittswerte für die in dieser Studie betrachteten Zeitpunkte: den Status quo, das Jahr 2035 und das Zieljahr der Klimaneutralität in Bayern. Die Brennstoffpreise (Erdgas, Erdöl, Kohle) basieren dabei kurzfristig auf gehandelten Börsenpreisen und langfristig im Trendszenario auf den Stated Policies bzw. im Zielszenario auf den Announced Pledges aus [6]. Die Wasserstoffkosten basieren im Zielszenario auf Importkosten aus [7] und im Trendszenario auf [8]. Die Strompreise sind Ergebnisse der Berechnungen des FfE-internen Energiesystemmodells ISAaR.

Abbildung 8 Energieträgerpreise und Wasserstoffkosten im Trend-/Zielszenario

Die Preisentwicklung zwischen den dargestellten Stützjahren ist nicht abgebildet und kann nicht-lineare Verläufe aufweisen

Quelle: Brennstoffpreise: Börsenpreise, [6].Wasserstoffkosten: [7], [8]. Strompreise: Eigene Berechnungen. Eigene Darstellung, FfE.

Für die wichtigsten Energieträgerpreise gilt im Vergleich zwischen Ziel- und Trendszenario:


- Der Erdgaspreis sinkt kurzfristig ab und verbleibt auf diesem Niveau bis zum Klimaneutralitätsjahr: In beiden Szenarien sinkt der Erdgaspreis zunächst kurzfristig von ca. 47 Euro/MWh im Status quo auf 25 Euro/MWh (Trendszenario) bzw. auf 20 Euro/MWh (Zielszenario) im Jahr 2035 ab. Ausgehend von diesem Niveau bleiben die Preise nahezu konstant und liegen damit im Klimaneutralitätsjahr bei 27 Euro/MWh (Trendszenario) bzw. 18 Euro/MWh (Zielszenario) deutlich unter dem heutigen Status quo. Die Preisverläufe sind mit der globale Angebots-Nachfrage-Kurve begründet: Im Zielszenario geht die Nachfrage aufgrund ambitionierter Klimaschutzmaßnahmen stark zurück und der Preis sinkt somit deutlicher als im Trendszenario, in welchem es zwar ein LNG-Überangebot gibt, aber Erdgas trotz geopolitischer Unsicherheiten weiterhin ein relevanter Energieträger bleibt. [6]
- Wasserstoffkosten bleiben hinter den Erwartungen zurück und sind im Trendszenario auch 2035 mehr als doppelt so teuer wie im Zielpfad: Grüner Wasserstoff ist als emissionsfreier Brennstoff (Scope 1) entscheidend für das Gelingen der Industrietransformation. Gleichzeitig zeigt sich besonders im Hochlauf der Wasserstoffwirtschaft, dass ehemals vorgegebene Zielpfade und Preiserwartungen nicht erfüllt werden. Da der Markthochlauf noch nicht abgeschlossen ist und Preiserwartungen daher mit noch größeren Unsicherheiten als die Kostenprognosen verbunden sind, greift diese Studie auf Kosten für grünen Wasserstoff zurück. Diese liegen jedoch ebenfalls unter Berücksichtigung der vorliegenden Trends mittelfristig im Jahr 2035 mit 201 Euro/MWh noch mehr als doppelt so hoch wie in den Zielpfaden (100 Euro/MWh). Kernursachen der höheren Kosten sind bisher unterschätzte Kostenbestandteile wie Planung, Beschaffung und Installation, die häufig nicht berücksichtigten Verschleißkosten der Elektrolyse-Stacks und zu optimistische Annahmen bei den Stromkosten, da Opportunitäten vernachlässigt wurden [8]. Bis zum Klimaneutralitätsjahr nähern sich beide Pfade einander an, aber dennoch bleiben die Kosten im Trendszenario mit 109 Euro/MWh deutlich über den Kosten des Zielpfades mit 83 Euro/MWh.
- Die Strompreise unterscheiden sich in beiden Szenarien kaum und kehren nach einem mittelfristigen Rückgang auf das Niveau des Status quo zurück: Bis 2035 sinkt der Strompreis in beiden Szenarien deutlich auf 53 Euro/MWh im Zielszenario bzw. 70 Euro/MWh im Trendszenario. Im Klimaneutralitätsjahr erreicht er dann jedoch wieder das Niveau des Status quo mit 86 Euro/MWh im Zielszenario und 92 Euro/MWh im Trendszenario. Der im Trendszenario zunächst langsamere Ausbau der kostengünstigen erneuerbaren Energien wird durch eine geringere Nachfrage aufgrund der ebenso verzögerten Elektrifizierung in der Industrie (und weiteren Sektoren) ausgeglichen, sodass sich am Markt in beiden Szenarien ähnliche Strompreise einstellen.

CO₂-Zertifikatspreis im EU-ETS I

Der EU-ETS I ist das zentrale europäische Instrument, um marktwirtschaftlich getrieben CO₂-Verminderungsmaßnahmen in der Industrie anzureizen. Das Preissignal der CO₂-Zertifikate ist in Abbildung 9 dargestellt. Die CO₂-Zertifikatspreise im EU-ETS I (Erdgas, Erdöl, Kohle) basieren kurzfristig auf gehandelten Börsenpreisen und langfristig im Trendszenario auf den Stated Policies bzw. im Zielszenario auf den Announced Pledges aus [6].

Abbildung 9 CO₂-Zertifikatspreis (EU-ETS I) im Trend-/Zielszenario

Die Preisentwicklung zwischen den dargestellten Stützjahren ist nicht abgebildet und kann nicht-lineare Verläufe aufweisen

Quelle: Börsenpreisen, [6]. Eigene Darstellung, FfE.

In beiden Szenarien wird aufgrund der Verknappung der ausgegebenen Zertifikate ein Anstieg des CO₂-Preises im EU-ETS I angenommen. Ausgehend von 70 Euro/t CO₂ im Status quo verdoppeln sich die Preise bis 2035 in etwa. Im Zielszenario werden 148 Euro/t CO₂ erreicht, im Trendszenario 134 Euro/t CO₂. Der Preis im Zielszenario liegt aufgrund ambitionierterer Verknappung der Zertifikate höher als im Trendszenario. Daher steigt der Preis im Zielszenario bis zum Klimaneutralitätsjahr deutlich auf 173 Euro/t CO₂, während er im Trendszenario nur noch leicht auf 142 Euro/t CO₂ ansteigt. [6]

Ein Rückgang bis hin zu keiner weiteren Ausgabe neuer CO₂-Zertifikate würde bei verbleibenden Emissionen zu einem extrem starken Anstieg im CO₂-Preis führen. Beide Szenarien nehmen jedoch an, dass im sogenannten "End-game" des EU-ETS I das Preissignal nicht ungefiltert an die Akteure weitergegeben wird, sondern politische Maßnahmen ergriffen werden, um extreme Preisspitzen abzufedern – ohne jedoch die Signalwirkung des CO₂-Preises vollständig zu entkräften. Hinzu kommt, dass derzeit eine Integration von Negativemissionszertifikaten in den EU-ETS I diskutiert wird. Diese könnten zur Kompensation von schwer vermeidbaren Restemissionen genutzt werden. Die Grenzkosten zur Erzeugung von Negativemissionen stellen damit eine Obergrenze für den CO₂-Preis dar. Erwartete Kosten für die Abscheidung und Speicherung von biogenem CO₂ (BECCS) liegen in der Größenordnung der hier angenommenen CO₂-Preise im Klimaneutralitätsjahr. So schätzt [26], dass BECCS-Kosten von 350 Euro/t CO₂ im Status quo durch Skaleneffekte auf

180 Euro/t CO₂ im Jahr 2050 sinken werden. Diese Annahmen sind jedoch mit großen Unsicherheiten verbunden.

Infrastrukturkosten und Netznutzungsentgelte für die Industrie

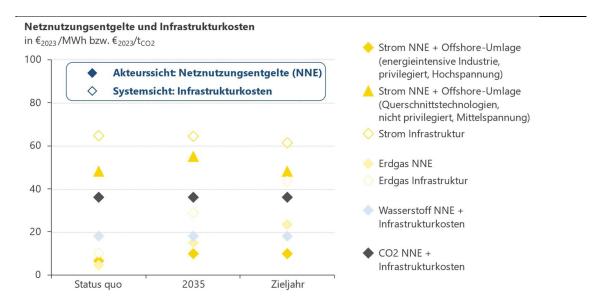

Dritter relevanter Kostenbestandteil sind Infrastrukturkosten in der Systemsicht sowie Netznutzungsentgelte (NNE) und Steuern, Abgaben, Umlagen (Tabelle 2) aus der Akteurssicht. Abbildung 10 zeigt die Entwicklung der angenommen Preisentwicklungen. Die Infrastrukturkosten und Netznutzungsentgelte basieren für Wasserstoff auf [27], für CO₂ auf [9], für Erdgas auf [28] und [29] und für Strom auf [30]

Tabelle 2 Berücksichtigte Steuern, Abgaben und Umlagen aus Akteurssicht

Energie- träger	Steuern, Abgaben, Umlagen	Weitere Annahmen
Strom	Stromsteuer: 0,50 Euro/MWh Konzessionsabgabe: 1,10 Euro/MWh KWKG-Umlage: 2,99 Euro/MWh § 19 StromNEV: 0,50 Euro/MWh	Stromsteuer und § 19 StromNEV werden für die Industrie reduziert. Es wird davon ausgegangen, dass diese Reduzierung bis 2045 bestehen bleibt.
Erdgas	Erdgassteuer: 5,50 Euro/MWh Gasspeicherumlage: 1,45 Euro/MWh	Großverbraucher > 5.000 MWh/a zahlen keine Konzessionsabgabe. Die Gasspeicherumlage ist nur im Status quo zu zahlen.
Heizöl, Naphtha	Energiesteuer: 6,20 Euro/MWh	
Holz- pellets	Ermäßigte MwSt.: 7 Prozent	
Kokerei- gas, Hoch- ofengas		Wird als kostenfreies Abgas behandelt
Sonstiges	MwSt.: 19 Prozent (wenn nicht anders angegeben)	

Abbildung 10
Netznutzungsentgelte und Infrastrukturkosten im Trend-/Zielszenario

Die Preisentwicklung zwischen den dargestellten Stützjahren ist nicht abgebildet und kann nicht-lineare Verläufe aufweisen

Quelle: Wasserstoff: [27]. CO₂: [9]. Erdgas: [28], [29].

Strom: [30]. Eigene Darstellung, FfE.

Die Infrastrukturkosten (Systemsicht) für **Strom** liegen im Korridor zwischen 64,80 Euro pro MWh (Status quo) und 61,30 Euro pro MWh. Die Netznutzungsentgelte (NNE) unterscheiden sich je nach Akteur: Für die energieintensiven Industrien werden unter Berücksichtigung von Netzentgeltprivilegien 6,50 Euro pro MWh im Status quo bzw. 10,00 Euro pro MWh in den Folgejahren angenommen. Nicht privilegierte Verbraucher zahlen 48,00 Euro pro MWh (Status quo und Zieljahr) bzw. 55,00 Euro pro MWh (2035). Aufgrund der sinkenden **Erdgasnachfrage** steigen sowohl die spezifischen Infrastrukturkosten (10,30 Euro pro MWh im Status quo) als auch die Netznutzungsentgelte (4,40 Euro pro MWh im Status quo) auf bis zu 43,50 Euro pro MWh bzw. 23,50 Euro pro MWh im Zieljahr an.

Für **Wasserstoff** wird sowohl ein steigender Bedarf für Infrastrukturausbau als auch steigende Wasserstoffnachfrage angenommen. Daher werden sowohl die Infrastrukturkosten als auch Netzentgelte in dieser Studie konstant bei 18,00 Euro pro MWh angesetzt. Analog dazu kann auch **CO**₂ betrachtet werden, bei welchem konstant 36,00 Euro pro MWh angenommen werden.

3.2 Anwendungsfaktoren geben die Einsatzpotenziale von CO₂-Verminderungstechnologien für die bayerischen Schlüsselbranchen vor

Die angenommene Umsetzung von CO₂-Verminderungsmaßnahmen in den beiden Szenarien ist in sogenannten Anwendungsfaktoren abgebildet. Diese geben den jeweils spezifischen Technologiehochlauf und -einsatz vor (Abbildung 11), ohne jedoch konkrete Transformationspfade einzelner Standorte zu beschreiben. Dabei wird zwischen prozessspezifischen CO₂-Verminderungsmaßnahmen und den verbleibenden, sogenannten Proxy-Maßnahmen unterschieden:

- Prozessspezifische CO₂-Verminderungsmaßnahmen stellen "Bottom-up"-erhobene, auf einen konkreten Prozess anwendbare CO₂-Verminderungsmaßnahmen aus den Fokusbranchen Textil, nicht-metallische Mineralien, Fahrzeugbau, Papier und Chemie dar. Dabei werden alle Technologien berücksichtigt, die zum betrachteten Zeitpunkt marktreif sind (Technologiereifegrad 9). Bei mehreren verfügbaren Alternativen basieren die Anwendungsfaktoren auf Branchen-Roadmaps, Interviews und interner FfE-Expertise insbesondere aus [1] (Szenario: E.Plan) und [2] (Szenario-Mix).
- Proxy-Maßnahmen werden branchenübergreifend und prozessunspezifisch in allen Temperaturniveaus eingesetzt und decken die verbleibenden Energiebedarfe ab. In Übereinstimmung mit den FfE-Industrieszenarien aus diversen Forschungsprojekten werden bei Proxy-Maßnahmen die Wärmeanwendungen mit einem Temperaturniveau unter 500 °C überwiegend elektrifiziert. In Wärmeanwendungen mit höheren Temperaturniveaus wird die CO₂-Neutralität durch Brennstoffwechsel hin zu den (potenziell) emissionsfreien Brennstoffen Wasserstoff, synthetischen Brennstoffen (SynFuels) und biogenen Energieträgern erreicht. Es wird angenommen, dass im Status quo verwendete gasförmige fossile Brennstoffe durch Wasserstoff, feste Brennstoffe durch Biomasse und flüssige durch SynFuels ersetzt werden.

Für beide Maßnahmengruppen gilt, dass Brennstoffwechsel bereits im Status quo technisch umsetzbar sind, da die Technologien (Wasserstoffbrenner, Multifuelbrenner für feste und flüssige Brennstoffe) marktreif verfügbar sind. Gleichwohl kann die Brennstoffverfügbarkeit eingeschränkt und der Brennstoffwechsel daher mit hohen Kosten verbunden sein.

Abbildung 11

Annahmen für die Anwendungsfaktoren zur Umsetzung von CO₂-Verminderungsmaßnahmen

Anwendungsfaktoren ... geben an, welche CO₂ Verminderungstechnologien zu welchem "Produktionsanteil" eingesetzt werden Prozessspezifische CO₂-Verminderungsmaßnahmen "Proxy"-Maßnahmen (Bottom-up) (alle Temperaturniveaus) • Berücksichtigung von Technologien mit • Übereinstimmend mit FfE-Industrieszenarien aus (zu erwartendem) Technologiereifegrad (TRL) 9 diversen Forschungsprojekten: Bei mehr als einer verfügbaren Wärmeanwendungen <500°C ${\bf Minderungsmaßnahme:}\ {\bf Anwendungsfaktoren}$ → werden überwiegend elektrifiziert basierend auf BranchenRoadmaps, Interviews und FfE-Expertise. Wärmeanwendungen >500°C → Umsetzung von Maßnahmen zur Brennstoffumstellung (z. B. $CH_4 \iff H_2$, Kohle \iff Biokohle, usw.) Brennstoffwechsel Für alle Brennstoffwechsel-Maßnahmen gilt, dass sie ab 2025 theoretisch Einsatzbereit sind. D. h.:

Auf der Anwendungsseite sind Wasserstoffbrenner und Multifuelbrennerfür feste / flüssige Brennstoffe verfügbar.
Aus systemischer Sicht kann die Verfügbarkeit bspw. von grünem Wasserstoff und Biomasse eingeschränkt sein.

Quelle: Eigene Abbildung, FfE.

4 CO₂-Verminderungskostenkurven zeigen die Differenzkosten zur fossilen Referenz auf

CO₂-Verminderungskostenkurven sind vereinfachte Darstellungen, aber hilfreich für den Vergleich einzelner CO₂-Verminderungsmaßnahmen

CO₂-Verminderungskostenkurven vergleichen **CO₂-Einsparungen**² und **Differenzkosten** von CO₂-Verminderungsmaßnahmen (z.B. einer Wärmepumpe) gegenüber der aktuell eingesetzten fossilen Referenztechnologie (z.B. einer Gasheizung). Die CO₂-Verminderungskosten (VK) in Euro je verminderter Tonne CO₂ berechnen sich aus der **Differenz der Gesamtkosten** und der **CO₂-Einsparung** zwischen der Maßnahme und der Referenz:

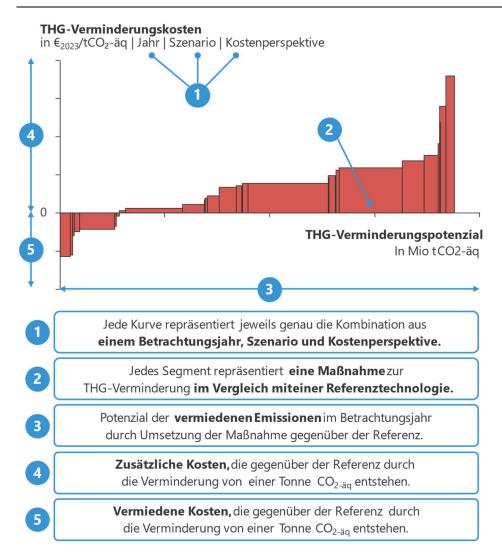
$$CO_2\text{-VK} = \frac{\text{Kostendifferenz (CO}_2\text{-Verminderungsmaßnahme vs. Referenztechnologie)}}{\text{CO}_2\text{-Einsparung}}$$
 (1)

$$= \frac{\Delta k}{\Delta e_{CO2}} = \frac{k_{Maßnahm} - k_{Referenz}}{e_{CO2,Referenz} - e_{CO2,Maßnah}}$$
(2)

Tabelle 3 zeigt eine beispielhaft vereinfachte Berechnung von CO₂-Verminderungskosten sowie die in dieser Studie berücksichtigten Kostenbestandteile und Emissionen.

Tabelle 3
Beispielhafte Berechnung von CO₂-Verminderungskosten und berücksichtigte Kostenbestandteile bzw. Emissionen

	Vereinfachte Berechnung	Berücksichtigte Elemente in der Studie	
Mehrkosten pro Jahr (ggü. der Referenz)	3.000 €	Die Kostendifferenz setzt sich aus annuisierten CAPEX, fixen/variablen OPEX und je nach Sichtweise (System oder Akteur) Infastrukturkosten oder Netznutzungsentgelten und Steuern, Abgaben, Umlagen zusammen.	
CO ₂ -Einsparung pro Jahr (ggü. der Referenz)	60 t CO ₂	Die CO₂-Einsparungen beinhalten prozess- und energetisch bedingte Scope 1 Emissionen.	
CO ₂ -Verminderungs- kosten	$\frac{3.000 \epsilon}{60 t CO_2} = \frac{5}{=}$	$\frac{3.000 \in}{60 \text{ t CO}_2} = \frac{50 \in \text{pro Tonne CO}_2}{60 \text{ t CO}_2}$	


² Diese Analyse betrachtet ausschließlich tatsächliche CO₂-Einsparungen, da diese mit Abstand den größten Anteil der industriellen Emissionen ausmachen. Andere Treibhausgase (z.B. CH₄, N₂O) spielen in den betrachteten Prozessen eine untergeordnete Rolle.

Die CO₂-Verminderungskostenkurven dieser Studie stellen jeweils Momentaufnahmen für eine konkrete Kombination aus drei Rahmenbedingungen dar:

- Einem konkreten Betrachtungsjahr: Status quo, 2035, Klimaneutralitätsjahr
- Einem Szenario: Trendszenario, Zielszenario
- Einer Kostenperspektive: Systemsicht, Akteurssicht

Abbildung 12 Schematische Darstellung einer THG-Verminderungskostenkurve

Quelle: Eigene Darstellung, FfE. In Anlehnung an [10].

Abbildung 12 zeigt eine beispielhafte CO₂-Verminderungskostenkurve. Jedes Segment einer CO₂-Verminderungskostenkurve stellt genau einen Vergleich von einer CO₂-Verminderungsmaßnahme mit der Referenztechnologie dar:

- Die Breite des Segments entspricht dem zugehörigen CO₂-Verminderungspotenzial (in Tonnen CO₂-äq) bei Umsetzung der CO₂-Verminderungsmaßnahme.
- Die Höhe des Segments entspricht den zugehörigen CO₂-Verminderungskosten (VK). (in Euro je verminderter Tonne CO_{2-äq}). Positive CO₂-VK bedeuten, dass die Umsetzung der CO₂-Verminderungsmaßnahme zu zusätzlichen Kosten im Vergleich mit der Referenztechnologie führt. Bei Negativen CO₂-VK werden durch die Umsetzung hingegen sowohl Kosten als auch CO₂ gegenüber der Referenz eingespart.

Interpretationsleitfaden für den richtigen Umgang mit CO₂-Verminderungskostenkurven

Insbesondere im Rahmen dieser Analyse sind vier Aspekte relevant, um eine Fehlinterpretation der CO₂-Verminderungskostenkurven zu vermeiden:

- Es werden zusätzliche oder vermiedene Kosten dargestellt, keine Gesamtkosten.
 Verminderungskosten bestehen immer aus Technologiepaaren (Referenz- und Minderungstechnologie). Der Kostenunterschied kann daher immer nur in Bezug auf eine Referenz eingeordnet werden. Es können keine Aussagen zur Wirtschaftlichkeit im Sinne von Amortisationszeiten o.ä. Kennzahlen abgeleitet werden.
- Das dargestellte Minderungspotenzial muss nicht den gesamten Emissionen der bayerischen Industrie in jedem Jahr entsprechen.
 Die Ausdehnung aller dargestellten Segmente entlang der x-Achse zeigt das gesamte Scope-1-Minderungspotenzial der zur Verfügung stehenden Maßnahmen im jeweiligen Betrachtungsjahr. Durch noch nicht (ausreichend) marktreife Technologien können nicht in jedem Jahr alle Emissionen vermieden werden. Bei Technologien zur Erzeugung von Negativemissionen kann das Verminderungspotenzial hingegen auch größer als die Menge der Emissionen sein.
- Die Rangfolge impliziert nicht zwangsläufig, was in der Praxis zuerst umgesetzt wird.
 CO₂-Verminderungskostenkurven sind rein technoökonomische Betrachtungen, die in dieser Studie einen Überblick über die Maßnahmen in den bayerischen Sektoren geben sollen. Die tatsächliche Umsetzung wird von weiteren Kriterien beeinflusst.
- Negative Verminderungskosten können fehlinterpretiert werden.
 Es kann vorkommen, dass negative Verminderungskosten aufgrund geringer spezifischer Emissionsunterschiede < 1 (im Nenner der Gleichung (2)) überproportional skaliert werden. Die Rangfolge von Kennzahlen mit negativen Verminderungskosten kann daher irreführend sein und muss immer durch eine zusätzliche Betrachtung der Emissionsunterschiede validiert werden.

Bei der Auswertung von CO₂-Verminderungskostenkurven ist daher zu beachten, dass sie sie vereinfachte Darstellungen und nur für den betrachteten Zeitpunkt und Bilanzraum gültig sind. Weitere Kriterien (z.B. die Akzeptanz) werden vernachlässigt, so dass auch bei negativen Minderungskosten Maßnahmen aus anderen Gründen möglicherweise nicht

umgesetzt werden. Die ausgewiesenen CO₂-Minderungspotenziale decken nicht notwendigerweise Wechselwirkungen ab, die sich aus der Umsetzung von einzelnen Maßnahmen ergeben. Jede CO₂-Verminderungskostenkure ist eine Momentaufnahme. Die Umsetzung von ausgewiesenen Verminderungspotenzialen hat immer Rückwirkung auf die Grundannahmen, bspw. die Entwicklung der Energieträgerpreise, was wiederrum die verbleibenden Potenziale beeinflusst. **CO₂-Verminderungskostenkurven ersetzen somit keine komplexen Modelle,** die Abhängigkeiten, sektoralen Wechselwirkungen und Kostenoptimierung im Energiesystem berechnen. Die in dieser Studie verwendeten Strompreise sind Ergebnisse einer konsistenten und umfangreichen Energiesystemmodellierung, in der die oben beschriebenen Interdependenzen und Abhängigkeiten berücksichtigt wurden. Die statischen CO₂ Verminderungskostenkurven werden in diesem Vorhaben also auf Grundlage einer dynamischen Energiesystemanalyse berechnet. Durch die Kombination der beiden Methoden wird einigen der zentralen Nachteilen von CO₂-Verminderungskosten entgegengewirkt.

Zusammenfassend gilt, dass CO₂-Verminderungskostenkurven hilfreich sind,

- um einzelne CO₂-Verminderungsmaßnahmen zu vergleichen (z.B. um die kostengünstige Alternative in einer bestimmten Umgebung herauszufinden).
- als Ausgangspunkt für Maßnahmenvergleiche und die tiefere Analyse der zugrunde liegenden Kostenstrukturen. Schlussfolgerungen ohne tieferes Verständnis der Grundannahmen sind hingegen nicht valide.
- um Sensitivitätsanalysen für wichtige Parameter (z.B. Energieträgerpreise, Diskontsätze etc.) und ihre Auswirkung für Verminderungskosten durchzuführen.
- um durch Variation der Anwendungsfaktoren zu sehen, wie sich verschiedene Kombinationen von Minderungsmaßnahmen auf die Kosten und das Potenzial der Minderung auswirken.

Alle berechneten CO₂-Verminderungskostenkurven im Zieljahr sowie die Ergebnistabellen aller berechneten CO₂-Verminderungspotenziale und -kosten sind im Anhang zu finden (Abbildung 22, sowie Tabelle 5 und Tabelle 6).

5 Die zehn wichtigsten Erkenntnisse für die Industrietransformation in Bayern

Trotz "No-Regret"-Maßnahmen im Bereich Elektrifizierung und Effizienz werden Planungssicherheit und weitere Investitionsanreize benötigt

Die Betrachtung ausgewählter CO₂-Verminderungskostenkurven aus den möglichen Kombinationen von Betrachtungsjahr, Kostenperspektive und übergeordnetem Szenario erlaubt die Ableitung von **zehn Kernergebnissen** in Bezug auf die Transformation der bayerischen Industrie zur Klimaneutralität:

1. CO₂-Neutralität in der Industrie ist möglich, aber mittelfristig höhere Energiepreise im Trendszenario hemmen notwendige Investitionen

Die Industrietransformation braucht Zielpfade zur langfristigen Orientierung, aber auch regelmäßige Anpassungen an aktuelle Trends. Im Trendszenario führt die Umsetzung der notwendigen Maßnahmen für eine CO₂-neutrale Industrie in Bayern im Zieljahr zu Mehrkosten i.H.v. 2,5 Mrd. Euro, denen Kosteneinsparungen von 0,4 Mrd. Euro gegenüberstehen.

2. Die Maßnahmencluster zeigen eine klare Kostenhierarchie: Effizienz und Elektrifizierung haben die niedrigsten CO₂-Verminderungskosten, Verfahrensroutenwechsel die höchsten

Die betrachteten Maßnahmen sortieren sich in der Kostenkurve nach ihrer Clusterzugehörigkeit: Von Effizienz- und Elektrifizierungsmaßnahmen (niedrige Verminderungskosten) über Brennstoffwechsel- und CO₂ Abscheidemaßnahmen bis hin zu Verfahrensroutenwechsel (hohe Verminderungskosten).

3. 90 Prozent des gesamten CO₂-Verminderungspotenzials können mit nur 45 Prozent der Mehrkosten erschlossen werden

Die gesamten Mehrkosten gegenüber fossilen Referenztechnologien werden durch einzelne, teure Maßnahmen getrieben. Der Großteil der CO₂-Verminderungsmaßnahmen kann mit weniger als der Hälfte der gesamten Mehrkosten umgesetzt werden und erschließt 90 Prozent des CO₂-Verminderungspotenzials der bayerischen Industrie.

4. Effizienzmaßnahmen sind "No-Regret"-Maßnahmen

Effizienzmaßnahmen führen zu verminderten Kosten gegenüber fossilen Referenztechnologien und vermeiden CO₂-Emissionen. Daher werden sie bereits flächendeckend umgesetzt, so dass ihr absolutes Verminderungspotenzial relativ gering ist. Dennoch stellen sie "No-Regret"-Maßnahmen dar.

5. Elektrifizierungsmaßnahmen - insbesondere von Nieder- und Mitteltemperaturwärme - führen trotz der veränderten Rahmenbedingungen im Trendszenario aus jeder Kostenperspektive zu verminderten Kosten

Nahezu alle Elektrifizierungsmaßnahmen stehen auch unter den Bedingungen des Trendszenarios im negativen Teil der Kostenkurve. Sie vermindern die Kosten gegenüber den Referenztechnologien und tragen den größten Anteil zum CO₂-Verminderungspotenzial bei.

6. Der Einsatz von grünem Wasserstoff als Brennstoff führt - trotz kostenparitätischen Brennertausch - durch die hohen Energieträgerkosten zu OPEX-Mehrkosten gegenüber der fossilen Referenz

Selbst im Zielszenario führen die hohen Kostenprognosen für grünen Wasserstoff zu positiven CO₂-Verminderungskosten. Ein Brennstoffwechsel zu "grünen Molekülen" ist für Unternehmen in beiden Szenarien mit Mehrkosten verbunden.

7. Die CO₂-Abscheidung erreicht durch den CO₂-Preis nahezu Kostenparität mit den Referenzprozessen – jedoch erst nach Auslaufen der freien Zertifikatszuteilungen im EU-ETS I

Die Kalk- und Zementindustrie ist auf die CO₂-Abscheidung zur Emissionsverminderung angewiesen. Trotz Rückgang der freien Zuteilung im ETS-I - und damit steigenden Kosten für die Referenztechnologie ohne CO₂-Abscheidung - erreichen diese erst langfristig Kostenparität bei einem stark steigenden, absoluten Kostenniveau.

8. Nicht alle notwendigen Maßnahmen erreichen negative CO₂-Verminderungskosten: 50 Prozent der Maßnahmen benötigen eine OPEX-Förderung, um die Umsetzung anzureizen

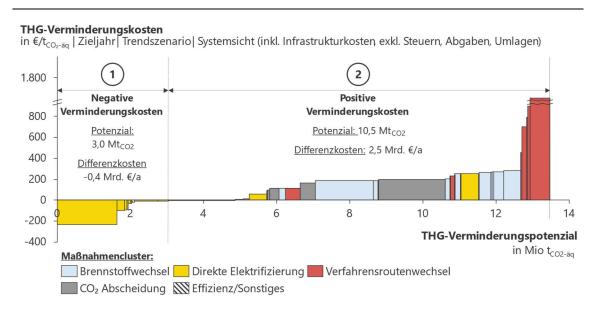
Insbesondere die durch die Energieträgerpreise getriebenen OPEX verursachen die Mehrkosten der teuren CO₂-Verminderungstechnologien gegenüber der jeweiligen Referenz. Eine OPEX-Förderung könnte für ca. 50 Prozent aller Maßnahmen Anreize zur Umsetzung geben.

9. Das absolute Kostenniveau für die Unternehmen steigt – auch ohne Umsetzung von Klimaschutzmaßnahmen

Auch bei niedrigen CO₂-Verminderungskosten kann das absolute Kostenniveau im Vergleich zum Status quo steigen und Produktpreise verteuern. Das absolute Kostenniveau ist jedoch entscheidend für die Wettbewerbsfähigkeit der Unternehmen in einem globalen Markt.

10. Notwendige Investitionen verzögern sich aktuell: Es muss jetzt Planungssicherheit geschaffen werden, um ausstehende Investitionen zu aktivieren

Die Unsicherheiten im Trendszenario führen zu verzögerten Investitionen in Transformationstechnologien. Neben finanziellen Anreizen können weitere Umsetzungspotenziale durch verlässliche regulatorische und infrastrukturelle Rahmenbedingungen erschlossen werden.



5.1 CO₂-Neutralität der Industrie ist möglich, aber mittelfristig höhere Energiepreise im Trendszenario hemmen notwendige Investitionen

Zielszenarien geben Orientierung für die langfristige Transformation der Industrie. Dennoch müssen die Zielpfade regelmäßig mit aktuellen Entwicklungen in der Industrie und Energiewirtschaft abgeglichen werden. Diese werden im Trendszenario berücksichtigt, in dem entscheidende Kostenparameter, wie beispielsweise Strom-, Wasserstoff- und CO₂-Preise, in der mittleren Frist teurer sind als im Zielszenario. Damit hemmen sie Investitionen in die Transformation und erfordern eine techno-ökonomische Neubewertung der verfügbaren CO₂-Verminderungsmaßnahmen.

Abbildung 13

CO₂-Verminderungskostenkurve der bayerischen Industrie im Zieljahr der Klimaneutralität im Trendszenario aus Systemsicht

Quelle: Eigene Darstellung, FfE.

Abbildung 13 zeigt die CO₂-Verminderungskostenkurve der bayerischen Industrie im Zieljahr der Klimaneutralität im Trendszenario aus der Systemsicht (ohne CO₂-Preis). Darin enthaltene Maßnahmen haben ein CO₂-Verminderungspotenzial von 13,5 Mio. t CO₂. Die fossilen Referenzprozesse stoßen basierend auf Annahmen zur Produktionsmengen- und gesamtwirtschaftlichen Entwicklung im Vergleich dazu im Zieljahr 14,7 Mio. t CO₂ aus. In allen Branchen außer der Branche der nicht-metallischen Mineralien kann CO₂-Neutralität erreicht werden. Die Zementklinker- und Kalkproduktion kann mit dem hier im Zieljahr ausgewiesenen CO₂-Verminderungspotenzial nicht vollständig emissionsfrei werden, da aufgrund technischer Limitationen keine 100 prozentige CO₂-Abscheidung möglich ist. Auch bei der Glas- und Ziegelherstellung verbleiben trotz Brennstoffwechsel geringe Mengen prozessbedingter Emissionen, für die keine CO₂-Abscheidung vorgesehen ist [11] [12]. Diese Restemissionen können über Zertifikate aus der bis dahin unterstellten Integration

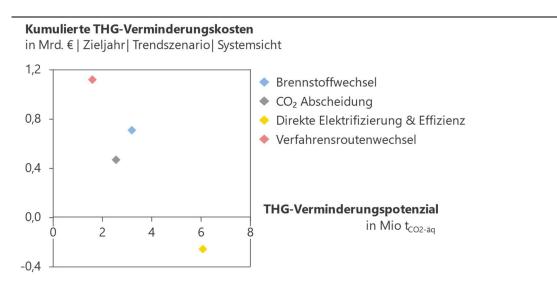
von Negativemissionstechnologien im EU-ETS und/oder über eine begrenzte Nutzung internationaler Zertifikatsgutschriften ausgeglichen werden.

Maßnahmen mit **negativen Verminderungskosten** (①) haben ein Verminderungspotenzial von 3,0 Mt CO₂ und machen damit knapp ein Viertel aller Maßnahmen aus. Eine Umsetzung dieser Maßnahmen würde zu volkswirtschaftlichen **Kosteneinsparungen in Höhe von 0,4 Mrd. Euro** im Betrachtungsjahr führen. Dem stehen Maßnahmen mit **positiven Verminderungskosten** (②) und einem Potenzial von 10,5 Mt CO₂-Verminderung gegenüber. Diese Maßnahmen sind mit **Mehrkosten in Höhe von ca. 2,5 Mrd. Euro** verbunden.

In Summe ergeben sich somit aus *volkswirtschaftlicher* Perspektive Mehrkosten von ca. 2,1 Mrd. Euro im Zieljahr, um die bayerische Industrie vollständig klimaneutral zu gestalten. Dies entspricht knapp einem Prozent des insgesamt durch den Klima- und Transformationsfonds (KTF) [31] von 2024 bis 2027 zur Verfügung stehenden Budgets von knapp 212 Mrd. Euro.

Diese systemischen Mehrkosten werden jedoch in der *Akteursperspektive* durch die Industrieunternehmen getragen, die teilweise im globalen Wettbewerb stehen und deren Kostenniveau damit steigt (Kapitel 5.9). Es ist daher davon auszugehen, dass entsprechende Investitionen unter den aktuellen und im Trendszenario fortgeschriebenen Rahmenbedingungen vielfach nicht getätigt werden (können). Gleichzeitig ist für die Reinvestition in vorhandene, fossile Referenztechnologien zu berücksichtigen, dass auch über das Zieljahr hinaus weitere, nicht zuverlässig vorhersagbare Kostensteigerung durch fossile Energieträgerpreise und den CO₂-Preis zu erwarten sind. Diese sind in der "Momentaufnahme" der abgebildeten Kurve nicht abgebildet und stellen ein hohes finanzielles Risiko dar. So konnte z.B. im Bayernplan Energie 2040 gezeigt werden, dass noch deutlich höhere Mehrkosten für die Industrie entstehen würden, wenn die Klimaneutralität im Zieljahr nur durch den Ersatz verbleibender fossiler Energieträger mittels chemisch identischer synthetische Brennstoffe erreicht werden kann.

Es lässt sich also bereits feststellen, dass zusätzlicher Handlungsbedarf besteht, um Klimaneutralität in der Industrie zu erreichen und zugleich deren Wettbewerbsfähigkeit zu sichern. Die folgenden tiefergehenden Aussagen gehen auf die relevantesten Erkenntnisse der Untersuchung hierzu ein.

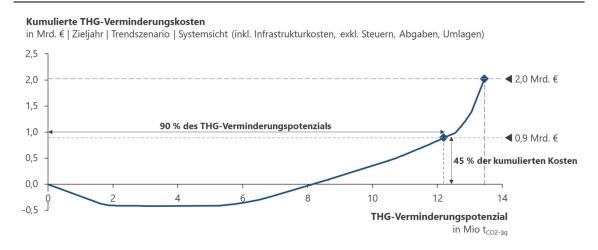

5.2 Die Maßnahmencluster zeigen eine klare Kostenhierarchie: Elektrifizierungsmaßnahmen mit den niedrigsten CO₂-Verminderungskosten

Die THG-Verminderungskostenkurve in Abbildung 13 unterteilt die einzelnen CO₂-Verminderungsmaßnahmen in übergreifende Maßnahmencluster. Dabei lässt sich im Zieljahr eine klare Kostenhierarchie erkennen:

- Effizienz- und Elektrifizierungsmaßnahmen haben in der Regel niedrigere und überwiegend sogar negative CO₂-Verminderungskosten und stehen somit am weitesten links in der CO₂-Verminderungskostenkurve.
- Sie werden gefolgt von Maßnahmen des Clusters Brennstoffwechsel zu grünen Molekülen und CO₂ Abscheidung mit mittleren CO₂-Verminderungskosten von < 300 Euro pro vermiedener t CO₂.
- Das teuerste Maßnahmencluster stellen Verfahrensroutenwechsel, insbesondere in der Grundstoffchemie, dar. Diese Maßnahmen sind aus systemischer Sicht mit erheblichen Mehrkosten von > 450 Euro pro vermiedener t CO₂ verbunden.

Werden jeweils alle Maßnahmen eines Clusters zusammengefasst (Abbildung 14), zeigt sich, dass Elektrifizierungsmaßnahmen deutlich die niedrigsten, in Summe sogar negative Verminderungskosten und gleichzeitig das größte absolute Verminderungspotenzial der vier Maßnahmencluster aufweisen. Umso wichtiger ist es, die infrastrukturelle Voraussetzungen zu schaffen, um eine Umsetzung dieser Potenziale zu ermöglichen. Je höher die Maßnahmen in der Kostenhierarchie steigen, desto niedriger wird das absolute THG-Verminderungspotenzial.

Abbildung 14 Kumulierte Verminderungskosten und -potenziale aller Maßnahmen im Zieljahr der Klimaneutralität im Trendszenario aus Systemsicht


Quelle: Eigene Darstellung, FfE.

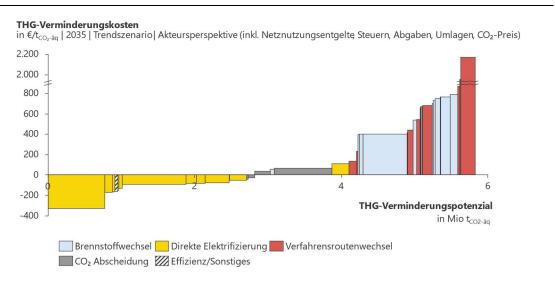
5.3 90 Prozent des CO₂-Verminderungspotenzials in der bayerischen Industrie können mit nur 45 der Mehrkosten erschlossen werden

Die Einzelmaßnahmen der in Abbildung 13 gezeigten CO₂-Verminderungskostenkurve können in eine kumulierte Kostenkurve (Abbildung 15) überführt werden, welche die Minderbzw. Mehrkosten der Maßnahmen in Summe darstellt.

Abbildung 15 Kumulierte CO₂-Verminderungskosten der bayerischen Industrie im Zieljahr der Klimaneutralität im Trendszenario aus Systemsicht

Quelle: Eigene Darstellung, FfE.

Für die Realisierung des vollständigen Verminderungspotenzials von 13,5 Mt CO₂ fallen systemische Mehrkosten in Höhe von ca. 2,1 Mrd. Euro an. Zuvor jedoch können bereits **90 Prozent des gesamten THG-Verminderungspotenzials mit 45 Prozent der kumulierten Kosten** erreicht werden. Die "teuersten" zehn Prozent des THG-Verminderungspotenzials erfordern schließlich über die Hälfte der kumulierten Differenzkosten i.H.v. 1,1 Mrd. Euro. Dies sind überwiegend teure Verfahrensroutenwechsel, also Maßnahmen, bei denen Klimaneutralität nicht durch einen reinen Energieträgerwechsel erreicht werden kann. Die teuersten Verfahrensroutenwechsel mit Verminderungskosten über 450 Euro/t CO₂ kommen allesamt aus der Grundstoffchemie, z.B. elektrische Steamcracker oder MtX-Prozesse³, die als Branche damit vor besonders hohen Mehrkosten steht und ggf. branchenspezifische Förderung benötigt.


³ MtX-Prozesse fassen MtO (Methan-to-Olefins)- und MtA (Methanol-to-Aromatics)-Verfahren zusammen. Dabei wird Methanol zu chemischen Grundstoffen, wie Olefine (z. B. Ethylen, Propylen) und Aromaten (z. B. Benzol, Toluol) umgewandelt. Da Methanol neben fossilen Rohstoffen auch aus alternativen Syntheseprozessen hergestellt werden kann, bieten diese Verfahren eine Möglichkeit zur Defossilisierung der Chemieindustrie.

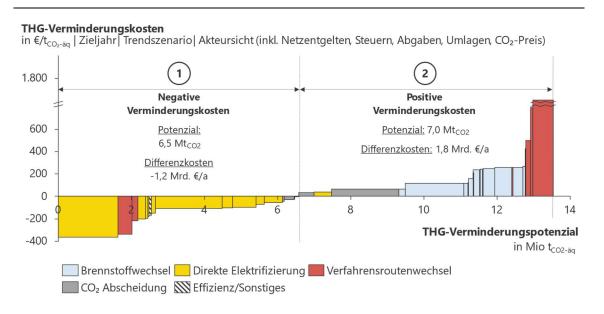
5.4 Effizienzmaßnahmen sind "No-Regret"-Maßnahmen

Erfahrungen aus der Praxis und Rückmeldungen der Industrieakteure zeigen: Bereits heute können Investitionen in Energieeffizienzmaßnahmen zu deutlichen Kosteneinsparungen führen und werden daher bereits in der Breite umgesetzt. Um eine Maßnahme als "No-Regret"-Maßnahme bezeichnen zu können, muss sie zu einer **CO₂-Verminderung und Kosteneinsparungen** aus Akteurssicht führen. Im Gegensatz zur bisher genutzten Systemsicht berücksichtigt die Akteurssicht Gebühren wie Netznutzungsentgelte und weitere Steuern und Abgaben, insbesondere den CO₂-Preis (Tabelle 1). Abbildung 16 zeigt die CO₂-Verminderungskosten aus Akteurssicht für das Jahr 2035 im Trendszenario. Der CO₂-Preis verschiebt weitere Verminderungsmaßnahmen – insbesondere aus dem Bereich Effizienz und Elektrifizierung – in den Bereich der negativen CO₂-Verminderungskosten.

Abbildung 16 CO₂-Verminderungskostenkurve der bayerischen Industrie für das Jahr 2035 im Trendszenario aus Akteurssicht

Quelle: Eigene Darstellung, FfE.

In der Darstellung sind die noch vorhandenen Effizienzpotenziale relativ gering, da nur Potenziale gezeigt werden, die auch zu einer Reduktion der Scope 1-Emissionen führen. Dennoch haben alle Effizienzmaßnahmen bereits vor dem Zieljahr der Klimaneutralität negative CO₂-Verminderungskosten. Effizienzmaßnahmen, die zu einem reduzierten Strombezug führen und damit keine direkte Scope-1-CO₂-Verminderung bewirken, können durch freiwerdende Kapazitäten in der elektrischen Infrastruktur die Elektrifizierung anderer Prozesse am Standort erleichtern, sind jedoch nicht in der Kurve sichtbar. Hinzu kommt, dass Investitionen in die Energieeffizienz in der Regel trotz längerer Amortisationszeiten weniger risikoreich als Investitionen in Produktionsmittel sind, da der Energiebedarf (z.B. durch Grundlastverbräuche) unterproportional auf konkrete Produktionsschwankungen reagiert. Investitionen in noch nicht umgesetzte Effizienzmaßnahmen mit negativen CO₂-Verminderungskosten können daher bereits aktuell als "No-Regret"-Maßnahme bezeichnet werden.



5.5 Elektrifizierungsmaßnahmen führen auch im Trendszenario zu verminderten Kosten

Ein deutlich größeres CO₂-Verminderungspotenzial haben die noch nicht umgesetzten (direkten) Elektrifizierungsmaßnahmen. Dazu gehört insbesondere die Elektrifizierung der Nieder- und Mitteltemperaturprozesswärme, beispielsweise durch Wärmepumpen, teilweise in Kombination mit Elektrodenkesseln. Sowohl aus Systemsicht im Klimaneutralitätsjahr (Abbildung 13) als auch aus Akteurssicht bereits im Jahr 2035 (Abbildung 16) und im Klimaneutralitätsjahr (Abbildung 17) haben Elektrifizierungsmaßnahmen überwiegend negative CO₂-Verminderungskosten.

Abbildung 17

CO₂-Verminderungskostenkurve der bayerischen Industrie im Zieljahr der Klimaneutralität im Trendszenario aus Akteurssicht

Quelle: Eigene Darstellung, FfE.

Trotz zunächst höherer Investitionsausgaben (CAPEX) für Wärmepumpen im Vergleich zu Referenztechnologien (wie z.B. konventionellen Gaskesseln) überwiegen in beiden Kostenperspektiven die Kosteneinsparungen. Aus Systemsicht sinken insbesondere die Infrastrukturkosten, da durch höhere Nutzungsgrade und Einbezug der Umweltwärme durch die Wärmepumpe weniger Energie über die vorgelagerte Netzinfrastruktur bereitgestellt werden muss. Aus Akteurssicht hingegen überwiegen die vermiedenen Ausgaben für den Kauf der CO₂-Zertifikate bei Weiterbetrieb der Referenztechnologie. Außerdem führen Effizienzgewinne zu Einsparungen bei den Energieträgerkosten.

Da Elektrifizierungsmaßnahmen auch unter den Bedingungen des Trendszenarios zu Gesamtkosteneinsparungen sowohl aus volkswirtschaftlicher als auch aus betriebswirtschaftlicher Sicht führen, ist es zentral, existierende Hemmnisse für die Umsetzung

schnellstmöglich zu beseitigen, um Investitionen in diese Technologien den Weg zu ebnen. Dazu gehören unter anderem ein beschleunigter Netzausbau, der in den systemischen Infrastrukturkosten berücksichtigt ist, sowie der verlässliche und zügige Anschluss der Endkunden an die Netze. Weiterhin sollten regulatorische Unsicherheiten beispielsweise bei der Entwicklung von Netzentgelten beseitigen werden.

5.6 Der Einsatz von grünem Wasserstoff als Brennstoff führt durch hohe Energieträgerkosten zu OPEX-Mehrkosten ggü. der Referenz

Wie in Kapitel 3.1 erläutert, liegen die zu erwartenden Energieträgerkosten für Wasserstoff mittelfristig bis 2035 im Trendszenario mehr als doppelt so hoch wie im Zielszenario. Auch im Zieljahr liegen die Wasserstoffkosten im Trendszenario noch über den Erwartungen der Zielpfade.

Abbildung 18

Vergleich von Brennstoffwechselmaßnahmen mit Wasserstoffeinsatz im Zieljahr aus Akteurssicht im Ziel- (links) und Trendszenario (rechts)

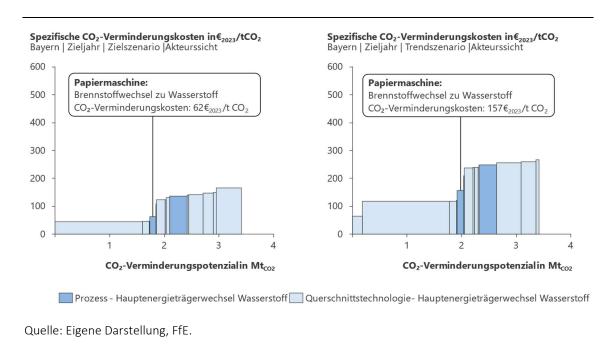
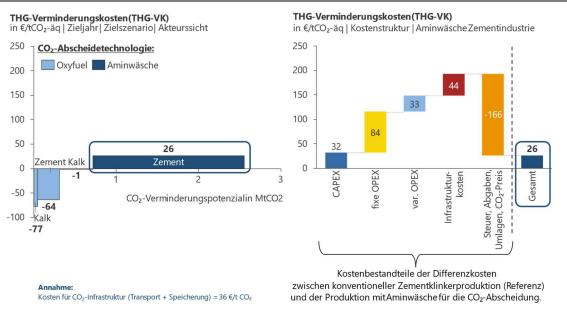


Abbildung 18 zeigt die überwiegend auf Wasserstoffeinsatz basierenden Brennstoffwechselmaßnahmen aus Akteurssicht im Trendszenario (links) und im Zielszenario (rechts). Die
Höhe der Mehrkosten hängt vom Anteil des Wasserstoffs ab. Wie in Kapitel 3.2 dargelegt,
werden in den Berechnungen gasförmige fossile Brennstoffe (v.a. Erdgas) durch Wasserstoff und feste fossile Brennstoffe durch Biomasse ersetzt. Selbst im ambitionierten, aktuell nicht erreichten Zielpfad führt der Einsatz von Wasserstoff als Brennstoff zu Mehrkosten. Am Beispiel der Papiermaschine zeigt sich: Die Maßnahmen bleiben für Akteure bis in

das Zieljahr hinein aufgrund der hohen OPEX-Mehrkosten ungünstig, trotz

kostenparitätischem Brennertausch. So ist der Brennstoffwechsel von der fossilen hin zur wasserstoffbefeuerten Dampferzeugung mit CO_2 -Verminderungskosten von 62 Euro pro Tonne CO_2 im Zielszenario und 157 Euro pro Tonne CO_2 im Trendszenario verbunden.

Im Trendszenario ist Wasserstoff 1,75-mal teurer als Erdgas (inklusive eines politisch abgeschwächten CO₂-Preis). Da das Erreichen der Klimaneutralität eine Grundvoraussetzung sowohl des Trend- als auch des Zielszenarios ist, müssen Unternehmen den Wasserstoff trotzdem beziehen. Das führt zu hohen Mehrkosten, die entweder die internationale Wettbewerbsfähigkeit beeinträchtigen oder über zusätzliche Förderungen ausgeglichen werden müssen. Um Kostenparität zu erreichen und sich mit dem Erdgaspreis bei theoretischem Weltmarktbezug von 26 Euro/MWh zuzüglich dem CO₂-Preis von 143 Euro/t CO₂ messen zu können, müsste der Wasserstoffpreis im Zieljahr der Klimaneutralität bei 60 Euro/MWh liegen. Damit die Industrieunternehmen nicht von hohen Mehrkosten durch den Wasserstoffbezug belastet werden, muss sichergestellt werden, dass rechtzeitig ausreichend Wasserstoff zu wettbewerbsfähigen Preisen verfügbar ist. Bei zukünftigen Investitionsentscheidungen ist zu prüfen, ob mittlerweile andere CO₂-Verminderungsmaßnahmen wie Elektrifizierungstechnologien zur Verfügung stehen, um das Risiko hoher prognostizierter Wasserstoffpreise zu vermeiden.


5.7 Die CO₂-Abscheidung erreicht erst nach Auslauf der freien Zertifikatszuteilung im EU-ETS I nahezu Kostenparität mit der Referenz

Der in Kapitel 2.2 beschriebene Rückgang der freien Zuteilung und der insgesamt verfügbaren Zertifikate im EU-ETS I erfordert für Unternehmen der Kalk- und Zementindustrie die Installation von CO₂-Abscheideanlagen. In beiden Prozessen entweicht aus dem Rohstoff Kalkstein im jeweiligen Brennprozess stofflich bedingtes CO₂ (Prozessemissionen). Im Gegensatz zu energetisch bedingten Emissionen aus der Verbrennung kohlenstoffhaltiger Energieträger können diese nicht durch Energieträgerwechsel vermieden werden. Da es keine Rohstoffalternativen zum Kalkstein gibt, verbleibt die CO₂-Abscheidung als einzige CO₂-Verminderungsmaßnahme, wenngleich sie keine vollständige Abscheidung erreicht.

Abbildung 19

CO₂-Verminderungskosten für CO₂-Abscheidung in der Kalk- und Zementindustrie im Zieljahr des Zielszenarios aus Akteurssicht (links); Kostenstruktur der Aminwäsche in der Zementproduktion (rechts)

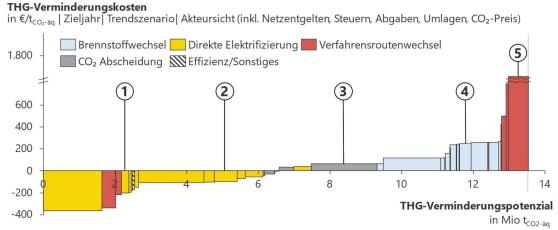
Quelle: Eigene Darstellung, FfE.

Die CO₂-Abscheidung kommt in den dargestellten Transformationspfaden aufgrund der unvermeidbaren Prozessemissionen nur in der Kalk- und Zementindustrie zum Einsatz. Dabei stehen zwei Technologien zur Verfügung: die heute bereits marktreife, aber energieintensive und in der Investition (spezifische CAPEX: 180 Euro pro abgeschiedener t CO₂) teurere Aminwäsche sowie das etwas weniger energieintensive Oxyfuelverfahren mit anschließender kryogener CO₂-Abtrennung (spezifische CAPEX: 106 Euro pro abgeschiedener t CO₂). Letzteres ist jedoch noch nicht vollständig am Markt erprobt.

Die CO₂-Abscheidung führt in der Regel zu positiven Verminderungskosten. Die niedrigsten CO₂-Verminderungskosten in allen betrachteten Kostenkurven sind im Zieljahr des Zielszenarios aus Akteurssicht (Abbildung 19, links) bei einem CO₂-Zertifikatepreis von 173 Euro/tCO₂ gegeben, wobei bis auf die Aminwäsche in der Zementproduktion, alle Verfahren negative CO₂-Verminderungskosten erreichen. Dies geschieht jedoch erst nach dem Auslaufen der CO₂-Zertifikate im EU-ETS I und damit zu spät für die Kalk- und Zementindustrie. Sie benötigen zum Ende der kostenlosen Zuteilungen im EU-ETS I wirtschaftlich tragfähige CO₂-Abscheidekonzepte. Die tiefere Analyse der zugrundeliegenden Kostenstruktur, beispielsweise für die Aminwäsche in der Zementproduktion (Abbildung 19, rechts), zeigt, dass die vermiedenen Kosten für CO₂-Emissionszertifikate (orangener Balken) der Haupttreiber der niedrigen Differenzkosten zur Referenz sind. Das Gesamtniveau der Kosten in der Zementindustrie steigt damit auch bei negativen CO₂-Verminderungskosten.

Neben den oben beschriebenen, absehbaren Kostensteigerungen in der Zement- und Kalkproduktion führen unklare regulatorische und infrastrukturelle Rahmenbedingungen im Bereich der CO₂-Abscheidung und Speicherung (CCS) zu Unsicherheiten. Eine verfügbare CO₂-Infrastruktur mit Anbindung an CO₂-Speichermöglichkeiten ist in Zukunft ein relevanter Standortfaktor für diese Branchen.




5.8 50 Prozent der Maßnahmen benötigen eine OPEX-Förderung, um die Umsetzung anzureizen

Nach der bisherigen maßnahmenbezogenen Auswertung zeigt Abbildung 20 (unten) die bereits bekannte CO₂-Verminderungskostenkurve für das Zieljahr im Trendszenario aus der Akteurssicht. Die Segmente sind in der oberen Abbildung danach unterteilt, ob die CO₂-Verminderungstechnologie CAPEX- und/oder OPEX- oder keine Mehrkosten gegenüber der Referenztechnologie aufweist.

Abbildung 20

CO₂-Verminderungskostenkurve der bayerischen Industrie im Zieljahr der Klimaneutralität im Trendszenario aus Akteurssicht nach Kostenstruktur (oben) bzw. nach Maßnahmencluster (unten)

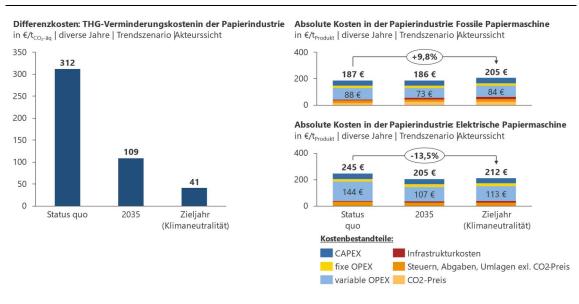
Quelle: Eigene Darstellung, FfE.

Im Bereich mit negativen CO₂-Verminderungskosten befinden sich überwiegend Maßnahmen, deren Differenzkosten CAPEX-getrieben sind, die sich jedoch durch geringe OPEX

gegenüber der Referenz (z.B. aufgrund niedrigerer Energiekosten aus Effizienzgründen) mindestens ausgleichen. Nahezu alle **Elektrifizierungsmaßnahmen**, wie der Einsatz von Wärmepumpen für Niedertemperaturprozesswärme (①) oder Wärmepumpen in Kombination mit Elektroheizkesseln für Mitteltemperaturprozesswärme (②), weisen **CAPEX-Mehrkosten** gegenüber der fossilen Wärmebereitstellung mit Erdgas auf. Dass dennoch negative Verminderungskosten erzielt werden liegt daran, dass die Effizienzgewinne der Wärmepumpe zu geringeren OPEX und damit in Summe vermiedenen Kosten gegenüber der Referenz führen.

Im Bereich der positiven CO₂-Verminderungskosten zeigen Maßnahmen aus dem Bereich **Brennstoffwechsel zu Wasserstoff** bzw. grünen Molekülen **OPEX-Mehrkosten** gegenüber der fossilen Referenz. Ein Beispiel ist der Einsatz von Wasserstoffbrennern in der Ziegelproduktion (4). Durch die auch im Zieljahr noch hohen Energieträgerpreise der grünen Moleküle benötigen diese Maßnahmen eine OPEX-Förderung, um Kostenparität mit der Referenz zu erreichen.

Schließlich verbleiben im Bereich der positiven Verminderungskosten teure **Verfahrensroutenwechsel**, beispielsweise der Umstieg von konventionellen Steamcrackern mit fossilem Naphtha zu elektrischen Steamcrackern mit synthetischem Naphtha (\mathfrak{S}), die **OPEX-und CAPEX-Mehrkosten** aufweisen. Auch die CO₂-Abscheidung mittels Aminwäsche in der Zementindustrie (\mathfrak{S}) fällt in diese Kategorie. Diese Maßnahmen würden ebenfalls von einer OPEX-Förderung profitieren.



5.9 Das absolute Kostenniveau steigt sowohl bei der Umsetzung von CO₂-Verminderungsmaßnahmen als auch bei Reinvestitionen in die Referenztechnologie

CO₂-Verminderungskosten stellen eine Form der Darstellung von Differenzkosten zwischen zwei Technologien dar. Negative CO₂-Verminderungskosten bedeuten daher, dass die Verminderungstechnologie Kosten gegenüber der Referenz einspart, ohne jedoch eine Aussage über das absolute Kostenniveau zu treffen.

Abbildung 21

Entwicklung der CO₂-Verminderungskosten (links) und der zugehörigen absoluten Kosten (rechts) im Vergleich der fossilen (oben) mit der elektrischen (unten) Papiermaschine im Trendszenario aus Akteurssicht

Quelle: Eigene Darstellung, FfE.

Abbildung 21 (links) zeigt exemplarisch für den Vergleich der fossilen mit einer elektrischen Papiermaschine (mit Zufeuerung durch Wasserstoff und/oder Biomasse) den sinkenden Verlauf der CO_2 -Verminderungskosten auf. Diese sinken von über 300 Euro pro vermiedener Tonne CO_2 im Status quo auf ca. 41 Euro pro vermiedener Tonne CO_2 im Klimaneutralitätsjahr.

Die rechte Seite der Abbildung zeigt die absoluten Kosten der jeweiligen Technologie aus Akteurssicht. Die sinkenden CO₂-Verminderungskosten kommen demnach vor allem dadurch zustande, dass das Kostenniveau der konventionellen fossilen Referenz um knapp zehn Prozent ansteigt, während sich die Kosten der CO₂-Verminderungstechnologie mit der Zeit verringern. Dennoch verbleibt die elektrische Papiermaschine im Zieljahr mit 212 Euro pro Tonne Produkt etwa 35 Euro über dem Kostenniveau der fossilen Referenz im Status quo (187 Euro pro Tonne Produkt) bzw. im Zieljahr (205 Euro pro Tonne

Produkt). Gründe für die langfristig steigenden Kosten bei einer Reinvestition in fossile Anlagen ist der steigende CO₂-Preis sowie steigende Netznutzungsentgelte für Strom und Gas. Auch die Verminderungsmaßnahmen sind von Kostensteigerungen durch Netzentgelte betroffen. Langfristig sinken die Gesamtkosten für die Verminderungsmaßnahme, da die Wasserstoffkosten sinken. Zusammenfassend zeigt sich, dass durch den Anstieg des CO₂ Preises und die Reduktion der frei zugeteilten Zertifikate im ETS I die gesellschaftlichen Kosten des THG-Ausstoßes für die Akteure Schritt für Schritt sichtbar werden. Hierdurch verteuert sich der Einsatz fossiler Technologien für Unternehmen und Gesellschaft und führt dazu, dass Klimaschutzinvestitionen angereizt werden. Dies entspricht zunächst dem gesellschaftlichen Konsens zum Klimaschutz und auch der aktuellen Beschlusslage in der EU. Problematisch wird es erst dann, wenn global unterschiedliche Geschwindigkeiten beim Klimaschutz existieren und so die Investitionen in den Klimaschutz zu Nachteilen im Wettbewerb mit dem europäischen Ausland führen. Folglich muss der EU ETS konsequent von weiteren politischen Maßnahmen wie dem Cross-Border-Adjustment-Mechanism (CBAM) flankiert werden, um Wettbewerb und Klimaschutz in Einklang zu bringen.

5.10 Notwendige Investitionen verzögern sich: Jetzt Planungssicherheit schaffen, um ausstehende Investitionen zu aktivieren

Ein abschließender Überblick über die berechneten CO₂-Verminderungskostenkurven zeigt, dass ein großes Verminderungspotenzial mit negativen Verminderungskosten – insbesondere bei Elektrifizierungsmaßnahmen – gibt, die bei einer Umsetzung zu sowohl volkswirtschaftlichen als auch betriebswirtschaftlichen Kosteneinsparungen und gleichzeitiger CO₂-Verminderung führen würden. Dass diese Maßnahmen bisher nicht umgesetzt sind, deutet auf fehlende Planungssicherheit in den Unternehmen hin. Es müssen daher Rahmenbedingungen geschaffen werden, um Vertrauen wirtschaftliche Energieträgerpreise zu schaffen, regulatorische Unsicherheiten zu beseitigen und zuverlässige infrastrukturelle Voraussetzungen zu schaffen.

Wettbewerbsfähige Energiepreise, Planungssicherheit und pragmatische Regulatorik können ein Treiber für die Transformationen der Industrie sein.

Die Validierung und Diskussion der CO₂-Verminderungskosten wurde unter Beteiligung von Akteuren der bayerischen Industrie durchgeführt. Im Zuge dessen wurden die drängendsten Hemmnisse sowie aktuelle bzw. mögliche Treiber für die Transformation der Industrie gesammelt (Tabelle 4). Die wichtigsten Forderungen aus Sicht der Industrie sind dabei:

- Zuverlässig niedrige und wettbewerbsfähige Energiepreise
- Beseitigung von Unsicherheiten bzgl. CO₂-Regulierung und CO₂-Infrastruktur
- Planungssicherheit und pragmatische Regulatorik

Neben dem Abbau der identifizierten Hemmnisse steht insbesondere die Schaffung und Stärkung von Transformationstreibern im Vordergrund, um die Umsetzung notwendiger Maßnahmen zum Erreichen der Klimaschutzziele anzureizen. Zuverlässige Rahmenbedingungen schaffen dabei Planungssicherheit, um Investitionsentscheidungen in Transformationstechnologien verlässlich bewerten zu können.

Tabelle 4
Gesammelte Hemmnisse und Treiber aus Sicht der bayerischen Industrie

kenntnis Fehlender Pragmatismus Fehlende Brückentechnologien Fehlende Frostliche Vorgaben: z.B. ETS, Wärmeplanungsgesetz Schnelle(re) Genehmigungsverfahren Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Finanzierung von Pilotprojekten, Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Zuverlässige, niedrige und wettbewerbsfähige Energiepreise Fechnologisch Fehlende Praxiserfahrung bei der Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen auf Vs. andere ökologische Bereiche Ökologisch Zielkonflikte: THG-Verminderung vs. andere ökologische Bereiche Forderungen, finanzierung von Pilotprojekten, Förderungen, finanzierung von Pilotprojekten, Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Flexible Maß			
kenntnis Fehlender Pragmatismus Fehlende Brückentechnologien Regulatorisch Unsicherheiten bzgl. CO2-Regulatorik und -Infrastruktur Unsicherheit bei endender freien Zuteilung im EU-ETS I ("Endgame") Ökonomisch Wettbewerbsdruck (EU-Ausland, global) Schwierige Finanzierungsvorgaben 2.B. bzgl. ROI / Amortisationszeiten Fehlende Zahlungsbereitschaft für grüne Produkte Steigende Gesamtkosten und Preise der Produkte Unpraktikable Förderbedingungen Fechnologisch Fehlende Praxiserfahrung bei der Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen auf Vs. andere ökologische Bereiche Klare gesetzliche Vorgaben: z.B. ETS, Wärmeplanungsver-fahren Finanzierung von Pilotprojekten, Förderungen, finanzielle Unter-stützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Zuverlässige, niedrige und wettbewerbsfähige Energiepreise Ferlogreiche Leuchtturmprojekte Erfolgreiche Leuchtturmprojekte Bestand (Infrastruktur und Anlagen) Wertschöpfungsketten brechen auf Vs. andere ökologische Bereiche Ökologisch Akzeptanz der CO ₂ -Speicherung Bewusstsein für Klimawandel und			
torik und -Infrastruktur Unsicherheit bei endender freien Zuteilung im EU-ETS I ("Endgame") Ökonomisch Wettbewerbsdruck (EU-Ausland, global) Schwierige Finanzierungsvorgaben z.B. bzgl. ROI / Amortisationszeiten Fehlende Zahlungsbereitschaft für grüne Produkte Steigende Gesamtkosten und Preise der Produkte Unpraktikable Förderbedingungen Fechnologisch Fehlende Praxiserfahrung bei der Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen auf Vs. andere ökologische Bereiche Vostal / Akzeptanz der CO ₂ -Speicherung Zu.B. ETS, Wärmeplanungsgesetz Schnelle(re) Genehmigungsverfahren Finanzierung von Pilotprojekten, Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Zuverlässige, niedrige und wettbewerbsfähige Energiepreise Ausbau der Erneuerbaren als positiver Standortfaktor Erfolgreiche Leuchtturmprojekte Bestand (Infrastruktur und Anlagen) hodifizierbar nutzen Flexibilitäten & Multi-Fuel-Fähigkeiten Priorisierung von Emissionsreduktionsmaßnahmen gegenüber anderen ökologischen Zielsetzungen (bspw. durch Feststellung überragenden öffentlichen Interesses)	Politisch	kenntnis – Fehlender Pragmatismus	Keine Farbenlehre bei MolekülenEine Strompreiszone
global) Schwierige Finanzierungsvorgaben z.B. bzgl. ROI / Amortisationszeiten Fehlende Zahlungsbereitschaft für grüne Produkte Steigende Gesamtkosten und Preise der Produkte Unpraktikable Förderbedingungen Fechnologisch Fehlende Praxiserfahrung bei der Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen auf Dikologisch Zielkonflikte: THG-Verminderung vs. andere ökologische Bereiche Sozial / Akzeptanz der CO ₂ -Speicherung Förderungen, finanzielle Unterstützunge, finanzielle Unterstützungen, stützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Zuverlässige, niedrige und wettbewerbsfähige Energiepreise Erfolgreiche Leuchtturmprojekte Bestand (Infrastruktur und Anlagen) Flexibilitäten & Multi-Fuel-Fähigkeiten Priorisierung von Emissionsreduktionsmaßnahmen gegenüber anderen ökologischen Zielsetzungen (bspw. durch Feststellung überragenden öffentlichen Interesses)	Regulatorisch	torik und -Infrastruktur - Unsicherheit bei endender freien Zuteilung im EU-ETS I ("End-	z.B. ETS, Wärmeplanungsgesetz – Schnelle(re) Genehmigungsver-
Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen auf Zielkonflikte: THG-Verminderung vs. andere ökologische Bereiche Vs. andere ökologische Bereiche Value der CO2-Speicherung Sozial / Sozia	Ökonomisch	global) - Schwierige Finanzierungsvorgaben z.B. bzgl. ROI / Amortisationszeiten - Fehlende Zahlungsbereitschaft für grüne Produkte - Steigende Gesamtkosten und Preise der Produkte - Unpraktikable Förderbedingun-	 Förderungen, finanzielle Unterstützung (z.B. Klimaschutzverträge) Ein dynamischer Strommarkt Flexible Maßnahmen im Sinne des eigentlichen Geschäftsmodells Zuverlässige, niedrige und wett-
vs. andere ökologische Bereiche tionsmaßnahmen gegenüber anderen ökologischen Zielsetzungen (bspw. durch Feststellung überragenden öffentlichen Interesses) Sozial / — Akzeptanz der CO ₂ -Speicherung — Bewusstsein für Klimawandel und	Technologisch	 Umsetzung von Transformationstechnoligen und Pilotanlagen Höhe des grünen Energiebedarfs Netzausbau (kurz- & mittelfristig) Wertschöpfungsketten brechen 	sitiver Standortfaktor - Erfolgreiche Leuchtturmprojekte - Bestand (Infrastruktur und Anlagen) modifizierbar nutzen - Flexibilitäten & Multi-Fuel-Fähig-
- 1 0	Ökologisch	_	tionsmaßnahmen gegenüber an- deren ökologischen Zielsetzungen (bspw. durch Feststellung überra-
	Sozial / Organisatorisch		

Zielszenarien geben die Richtung vor, Trendanalysen bewerten die nächsten Schritte

6 Zielszenarien geben die Richtung vor, Trendanalysen bewerten die nächsten Schritte

Die Industrietransformation braucht beides: Zielpfade zur langfristigen Orientierung, aber auch regelmäßige Anpassungen an aktuelle Trends

Die vorliegende Studie zeigt, dass die Transformation der bayerischen Industrie zur Klimaneutralität einen stetigen Abgleich der Zielpfade mit aktuellen Trends erfordert. Nur so ist eine kontinuierliche Bewertung der verfügbaren Transformationsmaßnahmen unter aktuellen Rahmenbedingungen möglich. **Zielszenarien** sind essenziell, um langfristige Klimaziele zu definieren und die Richtung der Transformation vorzugeben. Sie bieten Orientierung, setzen strategische Leitplanken und ermöglichen die Ableitung konkreter Maßnahmen zur Emissionsminderung. Gleichzeitig verdeutlicht das **Trendszenario**, dass die Realität oft von diesen Zielpfaden abweicht. Die Gründe sind vielfältig: unter anderem zählen infrastrukturelle Hemmnisse, wirtschaftliche und regulatorische Unsicherheiten sowie unklare Preisentwicklungen dazu. Diese Entwicklungen zeigen, dass viele Annahmen aus früheren Studien – etwa zur Verfügbarkeit erneuerbarer Energieträger oder zur Geschwindigkeit des Technologiehochlaufs – einer techno-ökonomischen Neubewertung bedürfen.

Daher ist eine regelmäßige Überprüfung der Zielpfade anhand aktueller Trends und Dynamiken unerlässlich. So kann sichergestellt werden, dass Maßnahmen weiterhin wirksam und wirtschaftlich tragfähig sind. Die CO₂-Verminderungskostenkurven bieten hierfür ein wertvolles Instrument: Sie ermöglichen einen differenzierten Vergleich einzelner Technologien unter verschiedenen Rahmenbedingungen und zeigen auf, welche Mehr- bzw. Minderkosten mit einer Maßnahmenumsetzung verbunden sind – sowohl aus volkswirtschaftlicher Systemsicht als auch aus betriebswirtschaftlicher Akteurssicht.

Für die Zukunft bedeutet dies: Zielpfade müssen als strategischer Kompass erhalten bleiben, erfordern aber eine adaptive Transformationsstrategie, die regelmäßig anhand verlässlicher Daten, realistischer Annahmen und dem Abgleich mit tatsächlichen Entwicklungen aktualisiert wird. Auf diesem Weg kann die bayerische Industrie ihre Transformation voranbringen und Wettbewerbsfähigkeit sichern. Besonders **Elektrifizierungs- und Effizienzmaßnahmen** können kurzfristig umgesetzt werden, da sie häufig zu negativen Verminderungskosten führen. Gleichzeitig müssen politisch regulatorische Rahmenbedingungen geschaffen werden, die Investitionen in komplexere Technologien, CO₂-Abscheidung oder Wasserstoffnutzung ermöglichen. Planungssicherheit, pragmatische Regulatorik und wettbewerbsfähige Energiepreise sind zentral für die Investitionsentscheidungen.

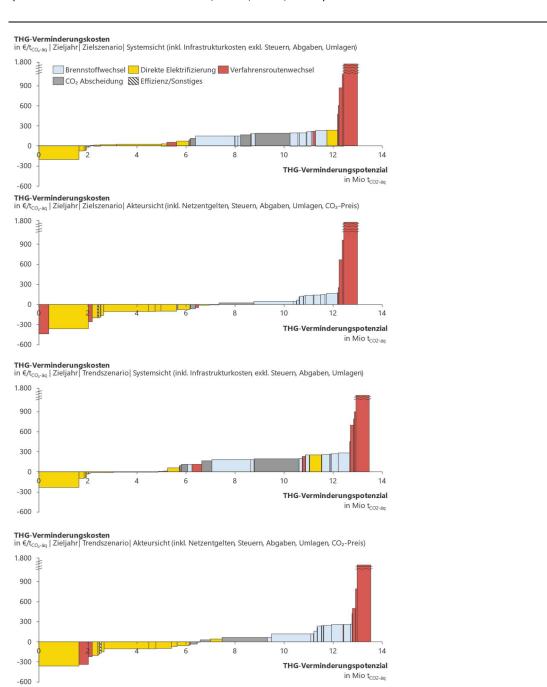
Die Transformation der Industrie ist ein kontinuierlicher Prozess, der sowohl strategische Orientierung als auch eine regelmäßige Neubewertung der kurz- bis mittelfristig anstehenden Maßnahmen erfordert. Das Trendszenario liefert hierfür die notwendige Realitätsperspektive, um die langfristigen Ziele nicht aus dem Blick zu verlieren und gleichzeitig die nächsten Schritte wirksam zu gestalten.

Literaturverzeichnis

Literaturverzeichnis

- [1] Guminski, Andrej: Bayernplan Energie 2040 Wege zur Treibhausgasneutralität Zusammenfassung. München: FfE, 2023.
- [2] Kern, Timo: Energiesystemanalyse Bayern klimaneutral Abschlussbericht. München: Forschungsstelle für Energiewirtschaft (FfE), 2024.
- [3] Bayerisches Klimaschutzgesetz (BayKlimaG). In https://www.gesetze-bayern.de/Content/Document/BayKlimaG
- [4] Koalitionsvertrag für die Legislaturperiode 2023-2028 Freiheit und Stabilität Für ein modernes, weltoffenes und heimatverbundenes Bayern (BayKoaV).
- [5] Der Europäische Emissionshandel Teilnehmer, Prinzip und Umsetzung des Europäischen Emissionshandels. In https://www.umweltbundesamt.de/daten/klima/der-europaeische-emissionshandel#teilnehmer-prinzip-und-umsetzung-des-europaischen-emissionshandels. (Abruf am 2024-02-11); Dessau-Roßlau: Umweltbundesamt (UBA), 2023.
- [6] World Energy Outlook 2024. Paris: International Energy Agency (IEA), 2024.
- [7] Moritz, M. et al., Estimating global production and supply costs for green hydrogen and hydrogen-based green energy commodities, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2022.12.046
- [8] Mohr, Stephan: Von der Theorie zur Praxis: Warum grüner Wasserstoff teurer ist als gedacht. München: FfE, 2025.
- [9] Smith, Erin: The cost of CO2 transport and storage in global integrated assessment modeling. In: International Journal of Greenhouse Gas Control Volume 109, July 2021, 103367. Cambridge, MA, USA: Massachusetts Institute of Technology, 2021.
- [10] Guminski, Andrej: CO2 Abatement in the European Industry Sector Evaluation of Scenario-Based Transformation Pathways and Technical Abatement Measures. Unpublished Doctoral Dissertation. Submitted to Technische Universität München (TUM), Main Supervisor Wagner, Ulrich: München, 2021.
- [11] Pleier A., Kracht H., Guminski A.: Analyse CO2-Infrastrukturbedarf in Bayern Eine vbw Studie, erstellt von der FfE Forschungsgesellschaft für Energiewirtschaft mbH. München: FfE GmbH, 2023.
- [12] Analyse CO2-Infrastrukturbedarf in Bayern Update. München: FfE GmbH, 2024.
- [13] Laufendes, Projekt: Energiewende in der Industrie: Potenziale, Kosten und Wechselwirkungen mit dem Energiesektor (2018 2021). München: Bundesministerium für Wirtschaft und Energie (BMWi), 2019.
- [14] TransHyDE-Projekt Sys Systemanalyse zu Transportlösungen für grünen Wasserstoff. In https://www.ffe.de/projekte/transhyde/. (Abruf am 2022-07-22); München: Forschungsgesellschaft für Energiewirtschaft mbH, 2022.
- [15] Bazzanella, Alexis et al.: Low carbon energy and feedstock for the European chemical industry. Frankfurt am Main: DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2017.
- [16] Roadmap Chemie 2050 Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland. München, Frankfurt: Dechema, 2019.
- [17] Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead, Revision 2017. Düsseldorf: European Cement Research Academy GmbH (ECRA), 2017
- [18] Quentin, Jürgen: Status des Windenergieausbaus an Land in Deutschland Jahr 2024. Berlin: Fachagentur Wind und Solar e. V., 2025.

Literaturverzeichnis


- [19] Energiebilanz Bayern 2022: https://www.stmwi.bayern.de/energie/energiedaten/energiebilanz-2022/; München: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, 2025.
- [20] Bayerische Versorgungssicherheitsstrategie Energieplan Bayern 2040. München: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, 2024.
- [21] Das Bayerische Klimaschutzprogramm (2024). München: Bayerisches Staatsministerium für Umwelt und Verbraucherschutz, 2024.
- [22] Bayerns Klimaziel im Kabinett schon vor Wochen gekippt. In https://www.br.de/nachrichten/bayern/bayerns-klimaziel-im-kabinett-schon-vor-wochen-gekippt,UZOjOCN. (Abruf am 2025-08-25); München: Bayerischer Rundfunk, 2025.
- [23] About the EU ETS. In https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/about-eu-ets_en?prefLang=de&etrans=de. (Abruf am 2025-03-26); Brüssel: European Commission, 2026.
- [24] Treibhausgasemissionen nach Sektoren des KSG: Bayern: https://view.office-apps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.statistik.bayern.de%2Fmam%2Fstatistik%2Fbauen_wohnen%2Fklima_luft%2Ftreibhausgasemissionen_nach_sektoren_des_ksg_10-2024.xlsx&wdOrigin=BROWSELINK; Fürth: Bayerisches Landesamt für Statistik, 2024.
- [25] Treibhausgasemissionen 2022 Emissionshandelspflichtige stationäre Anlagen und Luftverkehr in Deutschland (VET-Bericht 2022). Berlin: Deutsche Emissionshandelsstelle (DEHSt) im Umweltbundesamt, 2023.
- [26] Herhold, Patrick: Europe and Germany's Role in Catalyzing a Trillion-Euro Industry Carbon Dioxide Removal. Deutschland: The Boston Consulting Group (BCG), 2024.
- [27] Arnold, Fabian: Abschätzung zukünftiger Wasserstoffnetznutzungsentgelte. Köln: Energiewirtschaftliches Institut an der Universität zu Köln, 2024.
- [28] Agora Energiewende (2023): Ein neuer Ordnungsrahmen für Erdgasverteilnetze. Analysen und Handlungsoptionen für eine bezahlbare und klimazielkompatible Transformation.
- [29] Gaspreise für Haushalte im 1. Halbjahr 2024 um 4,0 % gestiegen Pressemitteilung Nr. 375 vom 30.09.2024. In https://www.destatis.de/DE/Presse/Pressemitteilungen/2024/09/PD24_375_61243.html. (Abruf am 2025-08-25); Wiesbaden: Statistisches Bundesamt, 2024.
- [30] Agora Energiewende (2025): Stromnetzentgelte–gut und günstig. Ausbaukosten reduzieren und Entgeltsystem zukunftssicher aufstellen
- [31] Der Klima- und Transformationsfonds. In https://www.bundesregierung.de/breg-de/aktuelles/ktf-sondervermoegen-2207614. (Abruf am 2025-08-25); Berlin: Presse- und Informationsamt der Bundesregierung, 2023.
- [32] Hübner, Tobias: Entwicklung eines Industriemodells zur Ableitung kostenoptimierter Energietransformationspfade der deutschen Industrie. Dissertation. Herausgegeben durch Technische Universität München: München, 2022.
- [33] NextGen Furnace. In https://www.klimaschutz-industrie.de/foerderung/dekarbonisierung-industrie/projekt/nextgen-furnace/. (Abruf am 2024-09-12); Cottbus: Kompetenzzentrum Klimaschutz in energieintensiven Industrien, 2022.

Anhang

Abbildung 22

 CO_2 -Verminderungskostenkurven der bayerischen Industrie für das Zieljahr im Ziel- (Z) bzw. Trendszenario (T) aus System- (S) bzw. Akteurssicht (A) (von oben nach unten: Z+S, Z+A, T+S, T+A)

Quelle: Eigene Darstellung, FfE.

Tabelle 5 Ergebnistabelle der CO₂-Verminderungskostenkurve im Jahr 2035

		V		ungskoste o/t CO2	en
Referenz- technologie	Verminderungs- technologie	CO ₂ -\		rungspote CO₂/a	enzial
		Zielsze	enario	Trends	zenario
		System	Akteur	System	Akteur
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-194	-348	-185	-329
fossil, Sonstiges	Elektr. (WP), Sonstiges	773	773	773	773
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-63	-188	-58	-173
fossil, Fahrzeugbau	Elektr. (WP), Fahrzeugbau	105	105	105	105
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-58	-184	-52	-167
fossil, Grundstoffchemie	Elektr. (WP), Gr.Chem.	33	33	33	33
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-50	-169	-45	-153
fossil, Papier	Elektr. (WP), Papier	16	16	16	16
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-19	-152	-10	-131
fossil, NMM	Elektr. (WP), NMM	48	48	48	48
Zementklinker,	Zementklinker,	-15	-172	-17	-161
konv. Ofen	Neue Bindemittel	37	37	39	39
Prozesswärme 100-500°C, fossil, Papier	Prozesswärme 100-500°C,	9	-106	28	-76
	Elektr. (WP + EK), Papier	334	334	334	334
Prozesswärme 100-500°C, fossil, Grundstoffchemie	Prozesswärme 100-500°C,	5	-114	25	-84
	Elektr. (WP+EK), Gr.Chem.	142	142	142	142
Prozesswärme 100-500°C, fossil, Sonstiges	Prozesswärme 100-500°C,	6	-121	26	-91
	Elektr. (WP + EK), Sonstig.	869	869	869	869
Prozesswärme 100-500 °C, fossil, Fahrzeugbau	Prozesswärme 100-500 °C,	13	-112	32	-82
	Elektr. (WP + EK), FZ-Bau	115	115	115	115
Behälterglas,	Behälterglas,	-6	-199	268	135
konv. Schmelzwanne	hybride Schmelzwanne	101	101	102	102
Prozesswärme 100-500°C,	Prozesswärme 100-500°C,	47	-84	67	-51
fossil, NMM	Elektr. (WP + EK), NMM	233	233	233	233
Kalkherstellung,	Kalkherstellung,	100	-23	154	56
konventionell	BSW (Biog. Brennst. + H ₂)	57	57	57	57
Kalkherstellung,	Kalkherstellung,	91	-58	94	-41
konventionell	konv. + CCS (Oxyfuel)	19	19	22	22

		Verminderungskosten in Euro/t CO₂				
Referenz-	Verminderungs-	CO₂-Verminderungspotenzial				
technologie	technologie	in kt CO₂/a				
		Zielsz	enario	Trends	zenario	
		System	Akteur	System	Akteur	
Zementklinker,	Zementklinker,	107	-47	111	-29	
konventionell	konv. + CCS (Oxyfuel)	78	78	91	91	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	321	270	547	553	
fossil, Sonstiges	BSW (H ₂), Sonstiges	86	86	71	71	
Steamcracker,	Methanol-to-Olefines	123	-336	975	684	
konventionell		135	135	135	135	
Kalkherstellung,	Kalkherstellung,	161	21	163	37	
konventionell	konventionell + CCS (AW)	211	211	211	211	
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	214	129	433	403	
fossil, NMM	BSW (H ₂), NMM	735	735	605	605	
Prozesswärme 100-500°C,	Prozesswärme 100-500°C,	215	129	431	401	
fossil, NMM	BSW (H ₂), NMM	58	58	48	48	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	217	133	445	418	
fossil, NMM	BSW (H ₂), NMM	5	5	4	4	
Zementklinker,	Zementklinker,	188	48	192	67	
konventionell	konventionell + CCS (AW)	749	749	782	782	
Papiermaschine,	Papiermaschine,	240	169	539	539	
fossil	BSW (Biog. Brennst. + H ₂)	46	46	48	48	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	278	222	641	668	
fossil, Papier	BSW (H ₂), Papier	2	2	1	1	
Flachglas,	Flachglas,	184	22	529	442	
konv. Schmelzwanne	hybride Schmelzwanne	76	76	76	76	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	286	228	636	658	
fossil, Grundstoffchemie	BSW (H₂), Gr.Chem.	4	4	3	3	
Prozesswärme 100-500 °C,	Prozesswärme 100-500 °C,	305	257	707	750	
fossil, Papier	BSW (H ₂), Papier	84	84	69	69	
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	307	262	718	764	
fossil, Papier	BSW (H ₂), Papier	8	8	6	6	
Papiermaschine,	Papiermaschine,	196	-61	337	109	
fossil	elektrisch	230	230	234	234	

		Verminderungskosten in Euro/t CO₂				
Referenz-	Verminderungs-	CO₂-Verminderungspotenzial				
technologie	technologie	in kt CO₂/a				
		Zielsz	enario	Trends	zenario	
		System	Akteur	System	Akteur	
Prozesswärme 100-500°C, fossil, Grundstoffchemie	Prozesswärme 100-500°C,	310	259	694	730	
	BSW (H ₂), Gr.Chem.	35	35	29	29	
Ziegelherstellung,	Ziegelherstellung,	316	271	720	765	
fossil	BSW (H ₂)	130	130	131	131	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	313	260	672	701	
fossil, Fahrzeugbau	BSW (H ₂), Fahrzeugbau	12	12	10	10	
Prozesswärme 100-500 °C, fossil, Fahrzeugbau	Prozesswärme 100-500 °C,	316	261	651	673	
	BSW (H ₂), Fahrzeugbau	29	29	24	24	
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	324	280	742	792	
fossil, Sonstiges	BSW (H ₂), Sonstiges	128	128	105	105	
Prozesswärme 100-500 °C, fossil, Sonstiges	Prozesswärme 100-500 °C,	332	280	676	703	
	BSW (H ₂), Sonstiges	217	217	179	179	
Behälterglas,	Behälterglas,	424	176	471	233	
konv. Schmelzwanne	elektrische Schmelzwanne	19	19	19	19	
Steamcracker,	Elektrocracker inkl. chemisches Recycling	788	596	741	545	
konventionell		49	49	49	49	
Steamcracker,	Methanol-to-Aromatics	733	348	2078	1954	
konventionell		12	12	12	12	
Steamcracker,	Elektrocracker	1.009	914	968	870	
konventionell	inkl. Bio-Naphtha	24	24	24	24	
Steamcracker,	Elektrocracker	1.693	1.705	2.082	2.173	
konventionell	inkl. synth. Naphtha	196	196	196	196	

Abkürzungen: AW = Aminwäsche, BSW = Brennstoffwechsel, EK = Elektrodenkessel, H₂ = Wasserstoff, NMM = Nicht-metallische Mineralien, WP = Wärmepumpe

Tabelle 6 Ergebnistabelle der CO₂-Verminderungskostenkurve im Zieljahr

		V		ungskoste o/t CO2	en	
Referenz-	Verminderungs-	CO₂-\	CO₂-Verminderungspotenzial			
technologie	technologie		in kt CO₂/a			
		Zielsze	enario	Trends	zenario	
		System	Akteur	System	Akteur	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-205	-365	-231	-364	
fossil, Sonstiges	Elektr. (WP), Sonstiges	1.628	1.628	1.628	1.628	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-72	-201	-99	-202	
fossil, Fahrzeugbau	Elektr. (WP), Fahrzeugbau	211	211	211	211	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-67	-196	-92	-195	
fossil, Grundstoffchemie	Elektr. (WP), Gr.Chem.	65	65	65	65	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-62	-183	-87	-183	
fossil, Papier	Elektr. (WP), Papier	31	31	31	31	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	-16	-161	-32	-148	
fossil, NMM	Elektr. (WP), NMM	101	101	101	101	
Zementklinker,	Zementklinker,	-15	-197	-19	-171	
konv. Ofen	Neue Bindemittel	59	59	76	76	
Prozesswärme 100-500 °C, fossil, Papier	Prozesswärme 100-500 °C,	17	-98	-7	-95	
	Elektr. (WP + EK), Papier	647	647	647	647	
Prozesswärme 100-500 °C, fossil, Grundstoffchemie	Prozesswärme 100-500 °C,	17	-105	-7	-102	
	Elektr. (WP+EK), Gr.Chem.	281	281	281	281	
Prozesswärme 100-500 °C, fossil, Sonstiges	Prozesswärme 100-500 °C,	25	-108	1	-106	
	Elektr. (WP + EK), Sonstig.	1.829	1.829	1.829	1.829	
Prozesswärme 100-500 °C, fossil, Fahrzeugbau	Prozesswärme 100-500 °C,	31	-101	7	-69	
	Elektr. (WP + EK), FZ-Bau	230	230	230	230	
Behälterglas,	Behälterglas,	7	-257	12	-220	
konv. Schmelzwanne	hybride Schmelzwanne	145	145	145	145	
Prozesswärme 100-500 °C, fossil, NMM	Prozesswärme 100-500 °C,	70	-74	59	-56	
	Elektr. (WP + EK), NMM	493	493	493	493	
Kalkherstellung,	Kalkherstellung,	81	-66	90	-24	
konventionell	BSW (Biog. Brennst. + H ₂)	17	17	17	17	
Kalkherstellung,	Kalkherstellung,	95	-77	96	-45	
konventionell	konv. + CCS (Oxyfuel)	51	51	51	51	

		V	erminder in Euro	ungskoste o/t CO2	en
Referenz-	Verminderungs-	CO₂-Verminderungspotenzial			
technologie	technologie	in kt CO₂/a			
		Zielsz	enario	Trends	zenario
		System	Akteur	System	Akteur
Zementklinker,	Zementklinker,	113	-64	115	-31
konventionell	konv. + CCS (Oxyfuel)	205	205	264	264
Prozesswärme < 100 °C, fossil, Sonstiges	Prozesswärme < 100 °C,	211	147	116	64
	BSW (H ₂), Sonstiges	181	181	181	181
Steamcracker,	Methanol-to-Olefines	58	-439	116	-338
konventionell		397	397	397	397
Kalkherstellung,	Kalkherstellung,	165	-1	166	32
konventionell	konventionell + CCS (AW)	405	405	405	405
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	149	45	184	118
fossil, NMM	BSW (H ₂), NMM	1.598	1.598	1.598	1.598
Prozesswärme 100-500°C, fossil, NMM	Prozesswärme 100-500°C,	150	45	185	118
	BSW (H ₂), NMM	123	123	123	123
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	149	47	186	122
fossil, NMM	BSW (H ₂), NMM	11	11	11	11
Zementklinker,	Zementklinker,	191	26	196	64
konventionell	konventionell + CCS (AW)	1.419	1.419	1.834	1.834
Papiermaschine,	Papiermaschine,	149	62	202	157
fossil	BSW (Biog. Brennst. + H ₂)	110	110	121	121
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	167	97	231	205
fossil, Papier	BSW (H ₂), Papier	3	3		3
Flachglas,	Flachglas,	220	-48	231	-3
konv. Schmelzwanne	hybride Schmelzwanne	120	120	120	120
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	181	109	240	211
fossil, Grundstoffchemie	BSW (H ₂), Gr.Chem.	7	7		7
Prozesswärme 100-500°C,	Prozesswärme 100-500°C,	183	123	253	238
fossil, Papier	BSW (H ₂), Papier	162	162	162	162
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	182	124	254	242
fossil, Papier	BSW (H ₂), Papier	15	15	15	15
Papiermaschine,	Papiermaschine,	239	-9	254	41
fossil	elektrisch	440	440	484	484

		Verminderungskosten in Euro/t CO ₂ CO ₂ -Verminderungspotenzial in kt CO ₂ /a				
Referenz- technologie	Verminderungs- technologie					
		Zielsz	enario	Trends	zenario	
		System	Akteur	System	Akteur	
Prozesswärme 100-500°C, fossil, Grundstoffchemie	Prozesswärme 100-500 C, BSW (H_2), Gr.Chem.	195 70	131 70	260 70	240 70	
Ziegelherstellung,	Ziegelherstellung,	194	136	262	249	
fossil	BSW (H ₂)	320	320	320	320	
Prozesswärme < 100 °C,	Prozesswärme < 100 °C,	207	140	264	239	
fossil, Fahrzeugbau	BSW (H ₂), Fahrzeugbau	23	23	23	23	
Prozesswärme 100-500°C,	Prozesswärme 100-500°C,	219	148	268	267	
fossil, Fahrzeugbau	BSW (H ₂), Fahrzeugbau	58	58	58	58	
Prozesswärme > 500 °C,	Prozesswärme > 500 °C,	198	142	270	259	
fossil, Sonstiges	BSW (H ₂), Sonstiges	270	270	270	270	
Prozesswärme 100-500°C, fossil, Sonstiges	Prozesswärme 100-500°C,	233	166	283	256	
	BSW (H ₂), Sonstiges	457	457	457	457	
Behälterglas,	Behälterglas,	474	249	454	257	
konv. Schmelzwanne	elektrische Schmelzwanne	36	36	36	36	
Steamcracker,	Elektrocracker inkl. chemisches Recycling	871	669	702	498	
konventionell		129	129	129	129	
Steamcracker,	Methanol-to-Aromatics	607	173	791	423	
konventionell		23	23	23	23	
Steamcracker,	Elektrocracker	1.066	957	899	789	
konventionell	inkl. Bio-Naphtha	70	70	70	70	
Steamcracker,	Elektrocracker	1.776	1.778	1.606	1.608	
konventionell	inkl. synth. Naphtha	549	549	549	549	

Abkürzungen: AW = Aminwäsche, BSW = Brennstoffwechsel, EK = Elektrodenkessel, H₂ = Wasserstoff, NMM = Nicht-metallische Mineralien, WP = Wärmepumpe

Tabelle 7
Prozessparameter

Prozesstechnologie	CAPEX fixe OPEX	Quelle	Lebens- dauer	Quelle	Brennstoff-/ Stromverbrauch	Quelle
	in €/t _{Produkt}		in Jahren		in MWh/t _{Produkt}	
Papiermaschine, fossil (Referenz)	330 18	[13]	20	[10]	1,10 0,39	[10]
Papiermaschine, elektrisch	340 19	[13]	20	[10]	0,37 0,97	[10]
Papiermaschine, Brenn- stoffwechsel	330 18	[13]	20	[10]	1,1 0,39	[10]
Chlor, konv. Membran- verfahren	710 107	[32]	10	[32]	0,20 2,36	[14]
Chlor, Membranv. mit O ₂ -Verzehrkathode	940 140	[32]	10	[32]	0,20 1,75	[14]
Steamcracker	5510 826	[32]	40	[10]	36,60 0,09	[15]
Elektrocracker, inkl. Bio- Naphthaherstellung	9430 480	[32]	40	[14]	93,00 5,52	[16]
Elektrocracker, inkl. synth. Naphthaherst.	6650 170	[32]	40	[14]	36,60 4,89	[14]
MtA	910 90	[32]	40	[14]	27,06 5,80	[14]
MtO	910 90	[32]	20	[14]	17,62 4,74	[15]
E-Cracker (inkl. Pyroly- seöl aus chem. Recycl.)	5840 290	[16]	40	[16]	63,00 4,89	[16]
Ziegelherstellung, konventionell	124,76 6,25	[32]	40	[32]	0,44 0,15	[32]
Ziegelherstellung, Brennstoffwechsel	124,76 6,25	[10]	40	[32]	0,44 0,15	[32]

Prozesstechnologie	CAPEX fixe OPEX	Quelle	Lebens- dauer	Quelle	Brennstoff-/ Stromverbrauch	Quelle
	in €/t _{Produkt}		in Jahren		in MWh/t _{Produkt}	
Zementklinker, Elektroofen	300 21	[32]	10	[32]	0,03 1,33	[32]
Zementklinker, konventioneller Ofen	298 11	[32]	40	[14]	1,05 0,09	[14]
Zementklinker, Neue Bindemittel	282 13	[32]	30	[14]	0,71 0,09	[14]
Zementklinker, konv. + CCS (Aminwäsche)	298 11	[32]	20	[32]	1,68 0,16	[32]
Zementklinker, konv. + CCS (Oxyfuel-Verfahren)	298 11	[32]	20	[32]	1,08 0,24	[32]
Zementklinker, Brennstoffwechsel	298 11	[32]	40	[32]	1,05 0,09	[32]
Behälterglas, konv. Schmelzwanne	713 36	[32]	12	[13]	1,64 0,39	[32]
Behälterglas, elektr. Schmelzwanne	754 38	[13]	5	[13]	0,00 1,51	[14]
Behälterglas, hybride Schmelzwanne	240 12	[33]	15	[13]	1,32 0,40	[14]
Flachglas, konv. Schmelzwanne	643 32	[32]	15	[13]	2,24 0,25	[14]
Flachglas, elektr. Schmelzwanne	240 12	[13]	15	[13]	2,09 0,32	[14]
Kalkherstellung, konventionell	74 4	[32]	40	[32]	1,14 0,11	[10]
Kalkherstellung, konv. + CCS (Aminwäsche)	74 4	[32]	20	[32]	1,77 0,18	[10]
Kalkherstellung, konv. + CCS (Oxyfuelverfahren)	74 4	[32]	20	[32]	1,77 0,18	[10]

Prozesstechnologie	CAPEX fixe OPEX	Quelle	Lebens- dauer	Quelle	Brennstoff-/ Stromverbrauch	Quelle
	in €/t _{Produkt}		in Jahren		in MWh/t _{Produkt}	
Kalkherstellung, Brennstoffwechsel	74 4	[10]	40	[32]	1,14 0,11	[10]

Hinweis für CCS-Maßnahmen: Die in Tabelle 7 gezeigten CAPEX und fixen OPEX stellen die Investitionen in die Ofentechnologie exkl. Kosten der Abscheidetechnologie dar. Diese sind in Tabelle 8 gezeigt.

Tabelle 8
Parameter der CO₂-Abscheidetechnologien (Carbon Capture)

Technologie	CAPEX in €/t _{co2}	Fixe OPEX in €/t _{CO2}	Abscheiderate	Quelle
Aminwäsche	180	70	95%	[17]
Oxyfuel-Verfahren	106	28	95%	[17]

Tabelle 9
CAPEX und fixe OPEX der Querschnittstechnologien nach [10] und Praxiserfahrung

Prozesstechnologie	CAPEX in Tsd. €/MWh _{th}	Fixe OPEX in Tsd. €/ MWh _{th}	Lebensdauer in Jahren	Nutzungs- grad
Prozesswärme 100-500 °C, Referenz	130,00	0,00	20	0,9
Prozesswärme 100-500 °C, Brennstoffwechsel	130,00	0,00	20	0,9
Prozesswärme 100-500 °C, Elektrifizierung	275,00	13,75	20	2,2
Prozesswärme < 100 °C, Referenz	65,00	3,25	20	0,9
Prozesswärme < 100 °C, Brennstoffwechsel	65,00	3,25	20	0,9
Prozesswärme < 100 °C, Elektrifizierung	500,00	25,00	20	3,5

Tabelle 10 Berücksichtigte Prozessemissionen

Prozesstechnologie	Prozessemissionen in t _{CO2} /t _{Produkt}	Quelle
Steamcracker	1,99	[15]
Methanol-to-Aromatics (MtA) (inkl. Direct Air Capture (DAC) + Methanolsynthese)	-5,89	[14]
Methanol-to-Olefins (MtO) (inkl. DAC + Methanolsynthese)	-3,84	[15]
Ziegelherstellung (alle Verfahren)	0,09	[32]
Zementklinkerherstellung (alle Verfahren)	0,54	[32]
Alternative Bindemittel	0,19	[14]
Zementklinkerherstellung, (alle Verfahren)	0,54	[32]
Behälterglas (alle Verfahren)	0,04	[32]
Flachglas (alle Verfahren)	0,19	[14]
Kalkherstellung (alle Verfahren)	0,73	[10]

Tabelle 11 Produktionsmengenentwicklungen in kt im Trends- und Zielszenario (eigene Annahmen und Berechnungen, FfE).

Produkt	Zielszenario			Trendszenario		
	2025	2035	2045	2025	2035	2045
Papier	3.308	3.334	3.082	3.200	3.238	3.394
Chlor	318	324	318	318	324	318
HVC	537	626	587	537	626	587
Ziegel	3.526	3.526	3.558	3.526	3.526	3.558
Zementklinker	3.374	3.559	2.770	3.498	3.682	3.580

Produkt	Zielszenario			Trendszenario		
	2025	2035	2045	2025	2035	2045
Hohlglas	599	581	539	599	581	539
Flachglas	230	236	256	230	236	256
Kalk	623	676	481	623	676	481

Ansprechpartner/Impressum

Ansprechpartner/Impressum

Dr. Markus Fisch

Abteilung Wirtschaftspolitik

Telefon 089-551 78-246 markus.fisch@vbw-bayern.de

Impressum

Alle Angaben dieser Publikation beziehen sich ohne jede Diskriminierungsabsicht grundsätzlich auf alle Geschlechter.

Herausgeber

vbw

Vereinigung der Bayerischen Wirtschaft e. V.

Max-Joseph-Straße 5 80333 München

www.vbw-bayern.de

Weitere Beteiligte

FfE

Forschungsgesellschaft für Energiewirtschaft mbH

Am Blütenanger 71 80995 München

www.ffe.de

Hannes Kracht Aïcha Platzdasch Andreas Fill Sarah Schmidt Nadja Helmer